scholarly journals Intelligent pharmaceutical patent search on a near-term gate-based quantum computer

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pei-Hua Wang ◽  
Jen-Hao Chen ◽  
Yufeng Jane Tseng

AbstractPharmaceutical patent analysis is the key to product protection for pharmaceutical companies. In patent claims, a Markush structure is a standard chemical structure drawing with variable substituents. Overlaps between apparently dissimilar Markush structures are nearly unrecognizable when the structures span a broad chemical space. We propose a quantum search-based method which performs an exact comparison between two non-enumerated Markush structures with a constraint satisfaction oracle. The quantum circuit is verified with a quantum simulator and the real effect of noise is estimated using a five-qubit superconductivity-based IBM quantum computer. The possibilities of measuring the correct states can be increased by improving the connectivity of the most computation intensive qubits. Depolarizing error is the most influential error. The quantum method to exactly compares two patents is hard to simulate classically and thus creates a quantum advantage in patent analysis.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 592
Author(s):  
Piotr Czarnik ◽  
Andrew Arrasmith ◽  
Patrick J. Coles ◽  
Lukasz Cincio

Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data {Xinoisy,Xiexact} via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where Xinoisy and Xiexact are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Riccardo Mengoni ◽  
Massimiliano Incudini ◽  
Alessandra Di Pierro

AbstractWe address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier.


2020 ◽  
Author(s):  
Edward Farhi ◽  
Hartmut Neven

We introduce a quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning. The quantum circuit consists of a sequence of parameter dependent unitary transformations which acts on an input quantum state. For binary classification a single Pauli operator is measured on a designated readout qubit. The measured output is the quantum neural network’s predictor of the binary label of the input state. We show through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets. We then discuss presenting the data as quantum superpositions of computational basis states corresponding to different label values. Here we show through simulation that learning is possible. We consider using our QNN to learn the label of a general quantum state. By example we show that this can be done. Our work is exploratory and relies on the classical simulation of small quantum systems. The QNN proposed here was designed with near-term quantum processors in mind. Therefore it will be possible to run this QNN on a near term gate model quantum computer where its power can be explored beyond what can be explored with simulation.


Author(s):  
Hai T. Nguyen ◽  
◽  
Giao N. Pham ◽  
Binh A. Nguyen ◽  
Tung V. Nguyen ◽  
...  

The paper gives the demonstrates of quantum super dense protocol and its related. Firstly, Qiskit's simulator is used to set-up and run the proposed quantum circuit, and then IBM quantum computer will be used to run the circuit for evaluation. In addition, we also introduce the two types of attacks which are possible on communication system and its simulation on IBM quantum computer via using quantum super dense protocol. The main findings are discussed in the wider setting of quantum cyber-security, where ways of hacking including the role of insider threats are discussed. Keywords—Quantum information, Quantum communication protocol, Quantum super dense coding, Quantum simulator, Quantum IBM Computer, Qiskit’s simulator


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Cristina Cîrstoiu ◽  
Zoë Holmes ◽  
Joseph Iosue ◽  
Lukasz Cincio ◽  
Patrick J. Coles ◽  
...  

Abstract Trotterization-based, iterative approaches to quantum simulation (QS) are restricted to simulation times less than the coherence time of the quantum computer (QC), which limits their utility in the near term. Here, we present a hybrid quantum-classical algorithm, called variational fast forwarding (VFF), for decreasing the quantum circuit depth of QSs. VFF seeks an approximate diagonalization of a short-time simulation to enable longer-time simulations using a constant number of gates. Our error analysis provides two results: (1) the simulation error of VFF scales at worst linearly in the fast-forwarded simulation time, and (2) our cost function’s operational meaning as an upper bound on average-case simulation error provides a natural termination condition for VFF. We implement VFF for the Hubbard, Ising, and Heisenberg models on a simulator. In addition, we implement VFF on Rigetti’s QC to demonstrate simulation beyond the coherence time. Finally, we show how to estimate energy eigenvalues using VFF.


2019 ◽  
Vol 5 (10) ◽  
pp. eaaw9918 ◽  
Author(s):  
D. Zhu ◽  
N. M. Linke ◽  
M. Benedetti ◽  
K. A. Landsman ◽  
N. H. Nguyen ◽  
...  

Generative modeling is a flavor of machine learning with applications ranging from computer vision to chemical design. It is expected to be one of the techniques most suited to take advantage of the additional resources provided by near-term quantum computers. Here, we implement a data-driven quantum circuit training algorithm on the canonical Bars-and-Stripes dataset using a quantum-classical hybrid machine. The training proceeds by running parameterized circuits on a trapped ion quantum computer and feeding the results to a classical optimizer. We apply two separate strategies, Particle Swarm and Bayesian optimization to this task. We show that the convergence of the quantum circuit to the target distribution depends critically on both the quantum hardware and classical optimization strategy. Our study represents the first successful training of a high-dimensional universal quantum circuit and highlights the promise and challenges associated with hybrid learning schemes.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


2018 ◽  
Vol 16 (08) ◽  
pp. 1840001
Author(s):  
Johannes Bausch

The goal of this work is to define a notion of a “quantum neural network” to classify data, which exploits the low-energy spectrum of a local Hamiltonian. As a concrete application, we build a binary classifier, train it on some actual data and then test its performance on a simple classification task. More specifically, we use Microsoft’s quantum simulator, LIQ[Formula: see text][Formula: see text], to construct local Hamiltonians that can encode trained classifier functions in their ground space, and which can be probed by measuring the overlap with test states corresponding to the data to be classified. To obtain such a classifier Hamiltonian, we further propose a training scheme based on quantum annealing which is completely closed-off to the environment and which does not depend on external measurements until the very end, avoiding unnecessary decoherence during the annealing procedure. For a network of size [Formula: see text], the trained network can be stored as a list of [Formula: see text] coupling strengths. We address the question of which interactions are most suitable for a given classification task, and develop a qubit-saving optimization for the training procedure on a simulated annealing device. Furthermore, a small neural network to classify colors into red versus blue is trained and tested, and benchmarked against the annealing parameters.


2020 ◽  
pp. 1-5
Author(s):  
Bahman Zohuri ◽  
◽  
Farhang Mossavar Rahmani ◽  

Companies such as Intel as a pioneer in chip design for computing are pushing the edge of computing from its present Classical Computing generation to the next generation of Quantum Computing. Along the side of Intel corporation, companies such as IBM, Microsoft, and Google are also playing in this domain. The race is on to build the world’s first meaningful quantum computer—one that can deliver the technology’s long-promised ability to help scientists do things like develop miraculous new materials, encrypt data with near-perfect security and accurately predict how Earth’s climate will change. Such a machine is likely more than a decade away, but IBM, Microsoft, Google, Intel, and other tech heavyweights breathlessly tout each tiny, incremental step along the way. Most of these milestones involve packing more quantum bits, or qubits—the basic unit of information in a quantum computer—onto a processor chip ever. But the path to quantum computing involves far more than wrangling subatomic particles. Such computing capabilities are opening a new area into dealing with the massive sheer volume of structured and unstructured data in the form of Big Data, is an excellent augmentation to Artificial Intelligence (AI) and would allow it to thrive to its next generation of Super Artificial Intelligence (SAI) in the near-term time frame.


Sign in / Sign up

Export Citation Format

Share Document