scholarly journals A two-way 224-Gbit/s PAM4-based fibre-FSO converged system

2022 ◽  
Vol 12 (1) ◽  
Hai-Han Lu ◽  
Chung-Yi Li ◽  
Wen-Shing Tsai ◽  
Poh-Suan Chang ◽  
Yan-Yu Lin ◽  

AbstractA two-way 224-Gbit/s four-level pulse amplitude modulation (PAM4)-based fibre-free-space optical (FSO) converged system through a 25-km single-mode fibre (SMF) transport with 500-m free-space transmission is successfully constructed, which adopts injection-locked vertical-cavity surface-emitting lasers with polarisation-multiplexing mechanism for a demonstration. Compared with one-way transmission, two-way transmission is an attractive architecture for fibre-FSO converged system. Two-way transmission over SMF transport with free-space transmission not only reduces the required number of fibres and the setups of free-space transmission, but also provides the advantage of capacity doubling. Incorporating dual-wavelength four-level pulse amplitude modulation (PAM4) modulation with polarisation-multiplexing mechanism, the transmission capacity of fibre-FSO converged system is significantly enhanced to 224 Gbit/s (56 Gbit/s PAM4/wavelength × 2-wavelength × 2-polarisation) for downlink/uplink transmission. Bit error rate and PAM4 eye diagrams (downstream/upstream) perform well over 25-km SMF transport with 500-m free-space transmission. This proposed two-way fibre-FSO converged system is a prominent one not only because of its development in the integration of fibre backbone with optical wireless extension, but also because of its advantage in two-way transmission for affording high downlink/uplink data rate with good transmission performance.

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4743-4748
Elham Heidari ◽  
Hamed Dalir ◽  
Moustafa Ahmed ◽  
Volker J. Sorger ◽  
Ray T. Chen

AbstractVertical-cavity surface-emitting lasers (VCSELs) have emerged as a vital approach for realizing energy-efficient and high-speed optical interconnects in the data centers and supercomputers. Indeed, VCSELs are the most suitable mass production lasers in terms of cost-effectiveness and reliability. However, there are still key challenges that prevent achieving modulation speeds beyond 30s GHz. Here, we propose a novel VCSEL design of a hexagonal transverse-coupled-cavity adiabatically coupled through a central cavity. Following this scheme, we show a prototype demonstrating a 3-dB roll-off modulation bandwidth of 45 GHz, which is five times greater than a conventional VCSEL fabricated on the same epiwafer structure. This design harnesses the Vernier effect to increase the laser’s aperture and therefore is capable of maintaining single-mode operation of the laser for high injection currents, hence extending the dynamic roll-off point and offering increases power output. Simultaneously, extending both the laser modulation speed and output power for this heavily deployed class of lasers opens up new opportunities and fields of use ranging from data-comm to sensing, automotive, and photonic artificial intelligence systems.

Sign in / Sign up

Export Citation Format

Share Document