scholarly journals Endothelial-derived extracellular microRNA-92a promotes arterial stiffness by regulating phenotype changes of vascular smooth muscle cells

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Wang ◽  
Haoyu Wu ◽  
Yuanming Xing ◽  
Yulan Ye ◽  
Fangzhou He ◽  
...  

AbstractEndothelial dysfunction and vascular smooth muscle cell (VSMC) plasticity are critically involved in the pathogenesis of hypertension and arterial stiffness. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and neighboring cells. Here, we investigated the role of endothelial-derived extracellular microRNA-92a (miR-92a) in promoting arterial stiffness by regulating EC–VSMC communication. Serum miR-92a level was higher in hypertensive patients than controls. Circulating miR-92a level was positively correlated with pulse wave velocity (PWV), systolic blood pressure (SBP), diastolic blood pressure (DBP), and serum endothelin-1 (ET-1) level, but inversely with serum nitric oxide (NO) level. In vitro, angiotensin II (Ang II)-increased miR-92a level in ECs mediated a contractile-to-synthetic phenotype change of co-cultured VSMCs. In Ang II-infused mice, locked nucleic acid-modified antisense miR-92a (LNA-miR-92a) ameliorated PWV, SBP, DBP, and impaired vasodilation induced by Ang II. LNA-miR-92a administration also reversed the increased levels of proliferative genes and decreased levels of contractile genes induced by Ang II in mouse aortas. Circulating serum miR-92a level and PWV were correlated in these mice. These findings indicate that EC miR-92a may be transported to VSMCs via extracellular vesicles to regulate phenotype changes of VSMCs, leading to arterial stiffness.

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2020 ◽  
Vol 21 (12) ◽  
pp. 4525
Author(s):  
Amanda St. Paul ◽  
Cali B. Corbett ◽  
Rachael Okune ◽  
Michael V. Autieri

Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yunzhao Yang ◽  
Shaoqun Tang ◽  
Chunchun Zhai ◽  
Xin Zeng ◽  
Qingjian Liu ◽  
...  

Background. Multiple interleukin (IL) family members were reported to be closely related to hypertension. We aimed to investigate whether IL-9 affects angiotensin II- (Ang II-) induced hypertension in mice. Methods. Mice were treated with Ang II, and IL-9 expression was determined. In addition, effects of IL-9 knockout (KO) on blood pressure were observed in Ang II-infused mice. To determine whether the effects of IL-9 on blood pressure was mediated by the signal transducer and activator of the transcription 3 (STAT3) pathway, Ang II-treated mice were given S31-201. Furthermore, circulating IL-9 levels in patients with hypertension were measured. Results. Ang II treatment increased serum and aortic IL-9 expression in a dose-dependent manner; IL-9 levels were the highest in the second week and continued to remain high into the fourth week after the treatment. IL-9 KO downregulated proinflammatory cytokine expression, whereas it upregulated anti-inflammatory cytokine levels, relieved vascular dysfunction, and decreased blood pressure in Ang II-infused mice. IL-9 also reduced smooth muscle 22α (SM22α) expression and increased osteopontin (OPN) levels both in mice and in vitro. The effects of IL-9 KO on blood pressure and inflammatory response were significantly reduced by S31-201 treatment. Circulating IL-9 levels were significantly increased in patients with the hypertension group than in the control group, and elevated IL-9 levels positively correlated with both systolic blood pressure and diastolic blood pressure in patients with hypertension. Conclusions. IL-9 KO alleviates inflammatory response, prevents phenotypic transformation of smooth muscle, reduces vascular dysfunction, and lowers blood pressure via the STAT3 pathway in Ang II-infused mice. IL-9 might be a novel target for the treatment and prevention of clinical hypertension.


2005 ◽  
Vol 288 (1) ◽  
pp. H37-H42 ◽  
Author(s):  
David S. Weber ◽  
Petra Rocic ◽  
Adamantios M. Mellis ◽  
Karine Laude ◽  
Alicia N. Lyle ◽  
...  

Increased reactive oxygen species (ROS) are implicated in several vascular pathologies associated with vascular smooth muscle hypertrophy. In the current studies, we utilized transgenic (Tg) mice (Tg p22smc) that overexpress the p22 phox subunit of NAD(P)H oxidase selectively in smooth muscle. These mice have a twofold increase in aortic p22 phox expression and H2O2 production and thus provide an excellent in vivo model in which to assess the effects of increased ROS generation on vascular smooth muscle cell (VSMC) function. We tested the hypothesis that overexpression of VSMC p22 phox potentiates angiotensin II (ANG II)-induced vascular hypertrophy. Male Tg p22smc mice and negative littermate controls were infused with either ANG II or saline for 13 days. Baseline blood pressure was not different between control and Tg p22smc mice. ANG II significantly increased blood pressure in both groups, with this increase being slightly exacerbated in the Tg p22smc mice. Baseline aortic wall thickness and cross-sectional wall area were not different between control and Tg p22smc mice. Importantly, the ANG II-induced increase in both parameters was significantly greater in the Tg p22smc mice compared with control mice. To confirm that this potentiation of vascular hypertrophy was due to increased ROS levels, additional groups of mice were coinfused with ebselen. This treatment prevented the exacerbation of hypertrophy in Tg p22smc mice receiving ANG II. These data suggest that although increased availability of NAD(P)H oxidase-derived ROS is not a sufficient stimulus for hypertrophy, it does potentiate ANG II-induced vascular hypertrophy, making ROS an excellent target for intervention aimed at reducing medial thickening in vivo.


2007 ◽  
Vol 293 (5) ◽  
pp. H3072-H3079 ◽  
Author(s):  
David M. Harris ◽  
Heather I. Cohn ◽  
Stéphanie Pesant ◽  
Rui-Hai Zhou ◽  
Andrea D. Eckhart

More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because Gq signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) Gq signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM Gq signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of Gq signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an α1-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of Gq signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC50. We also determined that inhibition of Gq signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that Gq signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular Gq-coupled receptors involved.


2007 ◽  
Vol 292 (4) ◽  
pp. H1922-H1930 ◽  
Author(s):  
Yuan Li ◽  
Georgios Lappas ◽  
Madhu B. Anand-Srivastava

We have previously reported that angiotensin II (ANG II) treatment of A10 vascular smooth muscle cells (VSMCs) increased inhibitory G proteins (Gi protein) expression and associated adenylyl cyclase signaling which was attributed to the enhanced MAP kinase activity. Since ANG II has been shown to increase oxidative stress, we investigated the role of oxidative stress in ANG II-induced enhanced expression of Giα proteins and examined the effects of antioxidants on ANG II-induced enhanced expression of Giα proteins and associated adenylyl cyclase signaling in A10 VSMCs. ANG II treatment of A10 VSMCs enhanced the production of O2− and the expression of Nox4 and P47phox, different subunits of NADPH oxidase, which were attenuated toward control levels by diphenyleneiodonium (DPI). In addition, ANG II augmented the expression of Giα-2 and Giα-3 proteins in a concentration- and time-dependent manner; the maximal increase in the expression of Giα was observed at 1 to 2 h and at 0.1–1.0 μM. The enhanced expression of Giα-2 and Giα-3 proteins was restored to control levels by antioxidants such as N-acetyl-l-cysteine, α-tocopherol, DPI, and apocynin. In addition, ANG II also enhanced the ERK1/2 phosphorylation that was restored to control levels by DPI. Furthermore, the inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of 5′- O-(3-triotriphosphate) (receptor-independent Gi functions) and ANG II-, des(Glu18,Ser19,Glu20,Leu21,Gly22)atrial natriuretic peptide4-23-NH2 (natriuretic peptide receptor-C agonist), and oxotremorine-mediated inhibitions of adenylyl cyclase (receptor-dependent functions) that were augmented in ANG II-treated VSMCs was also restored to control levels by antioxidant treatments. In addition, Gsα-mediated diminished stimulation of adenylyl cyclase by stimulatory hormones in ANG II-treated cells was also restored to control levels by DPI. These results suggest that ANG II-induced enhanced levels of Giα proteins and associated functions in VSMCs may be attributed to the ANG II-induced enhanced oxidative stress, which exerts its effects through mitogen-activated protein kinase signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document