scholarly journals Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharon Towett-Kirui ◽  
Jennifer L. Morrow ◽  
Markus Riegler

AbstractInsect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.

2021 ◽  
Author(s):  
Rosaura Mayén-Estrada ◽  
Roberto Júnio Pedroso Dias ◽  
Mireya Ramírez-Ballesteros ◽  
Mariana Rossi ◽  
Margarita Reyes-Santos ◽  
...  

Although many ciliates are free-living, more than 140 families of ciliates (Alveolata, Ciliophora) include symbiotic species of animals. Symbiosis, defined as an interaction between two species, is analyzed in this chapter to show a wide diversity of symbiotic systems in ciliates (epibiosis, commensalism, mutualism, and parasitism), providing some data about ciliate strategies showing their success as symbionts. Some species are free-living as well symbionts, facultative symbionts, and obligate symbionts. Analysis of reconstructions of ancestral state evidence that the parasitism arose numerous times and independently among the lineages of ciliates. At least three evolutionary routes can be traced: (1) transition from free-living to mutualism and parasitism, (2) transition from free-living to parasitism, and (3) regression from parasitism to free-living. The evolution of the symbiosis in ciliates demonstrates a higher diversification rate concerning free-living ciliates. The analysis of the evolution of the life cycles complexity, exploring molecular data of the phases of the ciliate cycle in their hosts is also essential. We propose new approaches for an integrative study of symbiotic ciliates.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2018 ◽  
Author(s):  
Jürgen F. H. Strassert ◽  
Elisabeth Hehenberger ◽  
Javier del Campo ◽  
Noriko Okamoto ◽  
Martin Kolisko ◽  
...  

ABSTRACTSpores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium to analyse the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


2021 ◽  
Author(s):  
Ben Schultz

Free-living parasite stages are important but often overlooked components of ecosystems, especially their role(s) in food webs. Trematode parasites have complex life cycles that include a motile transmission phase, cercariae, that are produced in great quantities within aquatic snail hosts and join the zooplankton community after emerging. Here I examined how cercariae presence affected the population abundance of a common freshwater zooplanktonic animal (Daphnia) when predators were present. I also sought to determine the pathways taken by cercariae-derived carbon within a model freshwater food web by using the stable isotope 13C as a tracer. I found that Daphnia population abundance positively benefitted from cercariae presence when larval dragonfly predators were present, serving as alternate prey. I also found that 13C was an effective tool to track the flow of cercarial carbon, demonstrating high consumption by benthic consumers, as well as the utility of this method for use in future studies.


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Sen Du ◽  
Fang Qin ◽  
Zefeng Zhang ◽  
Zhen Tian ◽  
Mingyu Yang ◽  
...  

SAR11 bacteria dominate ocean surface bacterioplankton communities, and play an important role in marine carbon and nutrient cycling. The biology and ecology of SAR11 are impacted by SAR11 phages (pelagiphages) that are highly diverse and abundant in the ocean. Among the currently known pelagiphages, HTVC010P represents an extremely abundant but under-studied phage group in the ocean. In this study, we have isolated seven new HTVC010P-type pelagiphages, and recovered 77 nearly full-length HTVC010P-type metagenomic viral genomes from marine metagenomes. Comparative genomic and phylogenomic analyses showed that HTVC010P-type pelagiphages display genome synteny and can be clustered into two major subgroups, with subgroup I consisting of strictly lytic phages and subgroup II mostly consisting of phages with potential lysogenic life cycles. All but one member of the subgroup II contain an integrase gene. Site-specific integration of subgroup II HTVC010P-type pelagiphage was either verified experimentally or identified by in silico genomic sequence analyses, which revealed that various SAR11 tRNA genes can serve as the integration sites of HTVC010P-type pelagiphages. Moreover, HTVC010P-type pelagiphage integration was confirmed by the detection of several Global Ocean Survey (GOS) fragments that contain hybrid phage–host integration sites. Metagenomic recruitment analysis revealed that these HTVC010P-type phages were globally distributed and most lytic subgroup I members exhibited higher relative abundance. Altogether, this study significantly expands our knowledge about the genetic diversity, life strategies and ecology of HTVC010P-type pelagiphages.


1982 ◽  
Vol 60 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Eric P. Hoberg ◽  
Steven G. McGee

Thirty-one raccoons, Procyon lotor hirtus Nelson and Goldman, from southern Saskatchewan, Canada, were examined for helminths. Six species were recovered: Plagiorchis cf. cf. elegans (Rudolphi, 1802); Alaria marcianae (LaRue, 1917); Pharyngostomoides adenocephala Beckerdite, Harkema and Miller, 1971; Microphalus sp.; Atriotaenia procyonis (Chandler, 1942); and Physaloptera sp. Comparisons were made with findings in a series of 25 raccoons from the midwestern United States and with published results and surveys in other regions. Notable variation exists in species diversity and intensity of infection of parasites in raccoons from different geographic regions. This is a consequence of diverse ecological conditions in different geographic regions. Since P. lotor is extending its range in Saskatchewan, it is suggested that the low diversity of its helminthic fauna may be attributable to dispersal of animals into regions where they persist in low numbers and where conditions are not suitable for completion of life cycles of helminths that elsewhere occur commonly in raccoons. The trematodes P. elegans and A. marcianae have not been previously reported from raccoons.


2005 ◽  
Vol 71 (10) ◽  
pp. 6319-6324 ◽  
Author(s):  
Gene W. Tyson ◽  
Ian Lo ◽  
Brett J. Baker ◽  
Eric E. Allen ◽  
Philip Hugenholtz ◽  
...  

ABSTRACT Analysis of assembled random shotgun sequence data from a low-diversity, subsurface acid mine drainage (AMD) biofilm revealed a single nif operon. This was found on a genome fragment belonging to a member of Leptospirillum group III, a lineage in the Nitrospirae phylum with no cultivated representatives. Based on the prediction that this organism is solely responsible for nitrogen fixation in the community, we pursued a selective isolation strategy to obtain the organism in pure culture. An AMD biofilm sample naturally abundant in Leptospirillum group III cells was homogenized, filtered, and serially diluted into a nitrogen-free liquid medium. The resulting culture in the terminal dilution grew autotrophically to a maximum cell density of ∼106 cells/ml, oxidizing ferrous iron as the sole energy source. 16S rRNA-internal transcribed spacer region clone library analysis confirmed that the isolate is a member of Leptospirillum group III and that the culture is axenic. We propose the name Leptospirillum ferrodiazotrophum sp. nov. for this iron-oxidizing, free-living diazotroph. This study highlights how environmental sequence data can provide insights for culturing previously uncultured microorganisms.


Author(s):  
Jan A. Pechenik

I have a Hardin cartoon on my office door. It shows a series of animals thinking about the meaning of life. In sequence, we see a lobe-finned fish, a salamander, a lizard, and a monkey, all thinking, “Eat, survive, reproduce; eat, survive, reproduce.” Then comes man: “What's it all about?” he wonders. Organisms live to reproduce. The ultimate selective pressure on any organism is to survive long enough and well enough to pass genetic material to a next generation that will also be successful in reproducing. In this sense, then, every morphological, physiological, biochemical, or behavioral adaptation contributes to reproductive success, making the field of life cycle evolution a very broad one indeed. Key components include mode of sexuality, age and size at first reproduction (Roff, this volume), number of reproductive episodes in a lifetime, offspring size (Messina and Fox, this volume), fecundity, the extent to which parents protect their offspring and how that protection is achieved, source of nutrition during development, survival to maturity, the consequences of shifts in any of these components, and the underlying mechanisms responsible for such shifts. Many of these issues are dealt with in other chapters. Here I focus exclusively on animals, and on a particularly widespread sort of life cycle that includes at least two ecologically distinct free-living stages. Such “complex life cycles” (Istock 1967) are especially common among amphibians and fishes (Hall and Wake 1999), and within most invertebrate groups, including insects (Gilbert and Frieden 1981), crustaceans, bivalves, gastropods, polychaete worms, echinoderms, bryozoans, and corals and other cnidarians (Thorson 1950). In such life cycles, the juvenile or adult stage is reached by metamorphosing from a preceding, free-living larval stage. In many species, metamorphosis involves a veritable revolution in morphology, ecology, behavior, and physiology, sometimes taking place in as little as a few minutes or a few hours. In addition to the issues already mentioned, key components of such complex life cycles include the timing of metamorphosis (i.e., when it occurs), the size at which larvae metamorphose, and the consequences of metamorphosing at particular times or at particular sizes. The potential advantages of including larval stages in the life history have been much discussed.


Sign in / Sign up

Export Citation Format

Share Document