scholarly journals Analysis of coal face stability of lower coal seam under repeated mining in close coal seams group

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Xiong ◽  
Dezhong Kong ◽  
Zhijie Wen ◽  
Guiyi Wu ◽  
Qinzhi Liu

AbstractAiming at the problem of coal face failure of lower coal seam under the influence of repeated mining in close coal seams, with the working face 17,101 as a background, the coal samples mechanics test clarified the strength characteristics of the coal face under repeated mining, through similar simulation experiments, the development of stable roof structure and surrounding rock cracks under repeated mining of close coal seams are further explored. And based on this, establish a coal face failure mechanics model to comprehensively analyze the influence of multiple roof structural instabilities on the stability of the coal face. Finally, numerical simulation is used to further supplement and verify the completeness and rationality of similar simulation experiment and theoretical analysis results. The results show that: affected by repeated mining disturbances, the cracks in the coal face are relatively developed, the strength of the coal body is reduced, and the coal face is more prone to failure under the same roof pressure; During the mining of coal seam 17#, the roofs of different layers above the stope form two kinds of "arch" structures and one kind of “voussoir beam” structure, and there are three different degrees of frequent roof pressure phenomenon, which is easy to cause coal face failure; Under repeated mining of close coal seams, the roof pressure acting on the coal face is not large. The main controlling factor of coal face failure is the strength of the coal body, and the form of coal face failure is mostly the shear failure of soft coal. The research results can provide a theoretical basis for coal face failure under similar conditions.

2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2011 ◽  
Vol 255-260 ◽  
pp. 3735-3739
Author(s):  
Wei Dong Pan ◽  
Xiao Hua Wu ◽  
Yang Li

Based on the big thickness, low stiffiness and other characters of No. 8 coal seam in Huaibei mining area, the moving laws of top coal seam and roof, and distribution law of ground pressure were studied under the fully mechanized top coal caving. The research methods included working resistance observation of hydraulic supports in working face, deformation observation of stope roadways and deeper base point observation in roof and top coal. The results show that, in the thick and soft coal seams, the influence coverage of mining ground pressure in fully mechanized top coal caving face is much wider than that in the working face with general mining technology, but the intensity of pressure is much lower.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaobin Li ◽  
Wenrui He ◽  
Zhuhe Xu

Extremely close coal seam groups are widely distributed in China, and the main mining method is downward mining. In the downward mining process of extremely close coal seam groups, the violent movement of overlying strata will cause the redistribution of surrounding rock stress. It not only produces stress concentration on the pillar but also causes the roof of the lower coal seam to be broken and difficulty in maintaining the mining roadway. In this study, the physical similitude modeling method and field observations were used to study the breakage and migration law of overlying strata in the downward mining of extremely close coal seams. Results show that in the process of mining upper coal seam, the first weighting step of the main roof is 37.5 m and the periodic weighting step is 12.5 m. The occurrence of strata separation is beneficial to the prediction of roof weighting. When the working face advances to 25 m, the rock stratum approximating a parallelogram of height 5 m does not collapse, and the working face is relatively dangerous. When mining the lower coal seam, the overall pressure of the working face is large, but the periodic weighting of the working face is not obvious. The first collapse step of the immediate roof is 15 m. When mining the upper and lower coal seams, the subsidence of the monitoring point increases significantly at 17.5 and 15 m, respectively. The roof collapse of the lower coal seam occurs 2.5 m ahead of that of the upper coal seam. The hydraulic value of the support, roof fall height, and sloughing depth in the entire working face reach the maximum at the coal pillar, and the extreme points at the coal pillar are relatively concentrated. This research provides some guidance for the safe and efficient mining of extremely close coal seams in the future.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shuai Liu ◽  
Ke Yang ◽  
Tong Zhang ◽  
Chunan Tang

Fully-mechanized mining of coal face with a large cutting height is generally jeopardized by rib spalling disaster in the working face. Preventive measures based on undisturbed coal seam conditions fail to provide safe predictions, as large-scale fractures in soft coal face frequently appear before excavation due to mining-induced stresses. This paper investigates a case study of the Paner Mine 11224 working face in the Huainan mine area, China, which features an overlying protected layer in the protective seam mining. To simulate the failure process in such a mine, we elaborated a simplified physical-mechanical model of a coal wall that underwent shear failure and sliding instability, in compliance with the triangular prism unit criterion. Similar simulation experiments, theoretical calculations, and borehole monitoring were used to comprehensively analyze the overburden fracture and movement after mining the lower protective seam. The development height of three overburden zones was determined, and the characteristics of the protected layer affected by mining were obtained. The results show that the failure is mainly related to the roof load, coal cohesion, internal friction angle, coal seam inclination, and sidewall protecting force. The key to limiting the frictional sliding of a slip body is to reduce the roof load and increase the sliding coefficient and cohesion of the main control weak surface (MCWS). Besides, a self-developed three-dimensional numerical calculation software RFPA3D (Realistic Fracture Process 3D Analysis), which considered the rock heterogeneity, was used to reproduce a weak triangular prism’s progressive failure process. The numerical simulation results agreed with the fracture pattern predicted by the theoretical model, which accurately described the rib spalling mechanisms in a soft coal face with a large cutting height and a protective layer.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Cui ◽  
Tinghui Zhang ◽  
Xiaoqiang Cheng

Rib spalling disaster at the coal mining faces severely restricted the safe and efficient output of coal resources. In order to solve this problem, based on the analysis of the current status of rib spalling in the three-soft coal seam 1508 Working Face of Heyang Coal Mine, a mechanical model of sliding-type rib spalling was established and the main influencing factors that affect rib spalling are given. The mechanism of grouting technology to prevent and control rib spalling has been theoretically analyzed. A similarity simulation experiment is used to analyze the change law of roof stress under the condition of three-soft coal seam mining. The optimal grouting pressure is determined by a numerical simulation experiment. And, silicate-modified polymer grouting reinforcement materials (SMPGMs) are used in field experiments. After twice grouting operations in the 1508 Working Face, the coal wall was changed from the original soft and extremely easy rib spalling to a straight coal wall and the amount of rib spalling has been reduced by 57.45% and 48.43, respectively. And, the mining height has increased by 0.16 m and 0.23 m, respectively. The experimental results show that the rib spalling disaster of the three-soft coal seam has been effectively controlled.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Anying Yuan ◽  
Hao Hu ◽  
Qiupeng Yuan

At the present time, it is considered to be of major significance to study the gas emission law and stability controls of coal bodies in deeply buried high-gas coal seams. For this reason, in view of the specific problems of gas emissions caused by unstable rib spalling in coal mine walls, comprehensive research methods were adopted in this study, in order to conduct an in-depth examination of micropore structure parameters, gas desorption, diffusion laws, and coal stability levels. The results showed that the development degree of the pores above the micropores, as well as the small pores in soft coal seams, was better than those observed in hard coal seams. In addition, the gas outburst phenomenon was found to have more easily formed in the soft coal seams. The coal body of the No. 6 coal seam in the Xieqiao Coal Mine not only provided the conditions for gas adsorption but also provided dominant channels for gas diffusion and migration. The abnormal gas emissions of the No. 6 coal seam were jointly caused by the relatively developed pores above the small holes in the coal body, rib spalling of coal mine walls, and so on. The research results also revealed the evolution law of mechanical characteristics of the No. 6 coal seam under different water content conditions. It was found that the strength levels of the No. 6 coal seam first increased and then decreased with the increase in water content, and the water content level at the maximum strength of the coal seam was determined to be 7.09%. This study put forward a method which combined the water injection technology of long-term static pressure water injections in deep coal mining holes and real-time dynamic pressure water injections in shallower holes. Field experiments were successfully carried out.


2013 ◽  
Vol 644 ◽  
pp. 382-386 ◽  
Author(s):  
Ming Ming Wen

The FLAC software is used in establishing a relevant model to study the strata behavior of fully mechanized working face of steep coal seams. Using this model, we have simulated the roof caving characteristic and the stress distribution of surrounding rocks and analyzed the deformation feature of the surrounding rocks in the working face end. Based on the in-situ observation about the fully mechanized working face, we have obtained the surrounding rock stress and the strata behavior of steep coal seam and proposed some countermeasures aiming at these problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feisheng Feng ◽  
Jiqiang Zhang ◽  
Zhen Yang ◽  
Dongdong Pang ◽  
Jing Zhang

The water burst of roof on working face has been one of the significant geotechnical engineering problems that needs to be urgently resolved. The coupling effects of seepage and damage on the amount and intensity of water inrush from the roof are critically important. In this paper, the seepage-damage coupling mathematical model of the aquifer in the working face is studied, and the seepage-damage coupling mechanics model at different stages of the aquifer is established. Under the coupling of permeability and damage, the water-soil characteristics of the aquifer in the 101163 working face of Mindong were numerically simulated by establishing the constitutive relation between vertical stress and permeability coefficient. The numerical results show that the stress concentration factor of the mining stress field gradually increases with the coal seam mining. The water-flowing fractured zone of the overburden is close to the communication of the quaternary aquifer. When the coal seam is excavated 250–300 m. Three free surfaces appear in the groundwater pressure field, and a large falling funnel is formed to establish a deep flow S-well well flow model. The research on the mining stress field and seepage field is carried out in combination with the Jakob formula. It is found that two sectors with reduced permeability of the fan surface are formed in front of the work. The variation law of the apocalyptic permeability infiltration under different mining distances, different coal seam thicknesses, different water pressures, and different roof management modes is studied systematically. The research indicates that the seepage flow under the condition of seepage infiltration of the lower aquifer should be between 50% and 100% of the traditional calculation method. The research results can help to deepen the understanding of the process of water inrush under the coupling of stress and seepage.


Sign in / Sign up

Export Citation Format

Share Document