scholarly journals Drosophila septin interacting protein 1 regulates neurogenesis in the early developing larval brain

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia-Yi Wei ◽  
Sao-Yu Chu ◽  
Yu-Chien Huang ◽  
Pei-Chi Chung ◽  
Hung-Hsiang Yu

AbstractNeurogenesis in the Drosophila central brain progresses dynamically in order to generate appropriate numbers of neurons during different stages of development. Thus, a central challenge in neurobiology is to reveal the molecular and genetic mechanisms of neurogenesis timing. Here, we found that neurogenesis is significantly impaired when a novel mutation, Nuwa, is induced at early but not late larval stages. Intriguingly, when the Nuwa mutation is induced in neuroblasts of olfactory projection neurons (PNs) at the embryonic stage, embryonic-born PNs are generated, but larval-born PNs of the same origin fail to be produced. Through molecular characterization and transgenic rescue experiments, we determined that Nuwa is a loss-of-function mutation in Drosophila septin interacting protein 1 (sip1). Furthermore, we found that SIP1 expression is enriched in neuroblasts, and RNAi knockdown of sip1 using a neuroblast driver results in formation of small and aberrant brains. Finally, full-length SIP1 protein and truncated SIP1 proteins lacking either the N- or C-terminus display different subcellular localization patterns, and only full-length SIP1 can rescue the Nuwa-associated neurogenesis defect. Taken together, these results suggest that SIP1 acts as a crucial factor for specific neurogenesis programs in the early developing larval brain.

2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Celine Moorman ◽  
Ronald H A Plasterk

AbstractThe sgs-1 (suppressor of activated Gαs) gene encodes one of the four adenylyl cyclases in the nematode C. elegans and is most similar to mammalian adenylyl cyclase type IX. We isolated a complete loss-of-function mutation in sgs-1 and found it to result in animals with retarded development that arrest in variable larval stages. sgs-1 mutant animals exhibit lethargic movement and pharyngeal pumping and (while not reaching adulthood) have a mean life span that is >50% extended compared to wild type. An extensive set of reduction-of-function mutations in sgs-1 was isolated in a screen for suppressors of a neuronal degeneration phenotype induced by the expression of a constitutively active version of the heterotrimeric Gαs subunit of C. elegans. Although most of these mutations change conserved residues within the catalytic domains of sgs-1, mutations in the less-conserved transmembrane domains are also found. The sgs-1 reduction-of-function mutants are viable and have reduced locomotion rates, but do not show defects in pharyngeal pumping or life span.


2021 ◽  
Author(s):  
Luojiang Huang ◽  
Kai Hua ◽  
Ran Xu ◽  
Dali Zeng ◽  
Ruci Wang ◽  
...  

Abstract Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Álvaro Figueroa ◽  
Antonio Brante ◽  
Leyla Cárdenas

AbstractThe polychaete Boccardia wellingtonensis is a poecilogonous species that produces different larval types. Females may lay Type I capsules, in which only planktotrophic larvae are present, or Type III capsules that contain planktotrophic and adelphophagic larvae as well as nurse eggs. While planktotrophic larvae do not feed during encapsulation, adelphophagic larvae develop by feeding on nurse eggs and on other larvae inside the capsules and hatch at the juvenile stage. Previous works have not found differences in the morphology between the two larval types; thus, the factors explaining contrasting feeding abilities in larvae of this species are still unknown. In this paper, we use a transcriptomic approach to study the cellular and genetic mechanisms underlying the different larval trophic modes of B. wellingtonensis. By using approximately 624 million high-quality reads, we assemble the de novo transcriptome with 133,314 contigs, coding 32,390 putative proteins. We identify 5221 genes that are up-regulated in larval stages compared to their expression in adult individuals. The genetic expression profile differed between larval trophic modes, with genes involved in lipid metabolism and chaetogenesis over expressed in planktotrophic larvae. In contrast, up-regulated genes in adelphophagic larvae were associated with DNA replication and mRNA synthesis.


Author(s):  
Nils Stührwohldt ◽  
Eric Bühler ◽  
Margret Sauter ◽  
Andreas Schaller

Abstract Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7 and SBT3.8 were found to be up-regulated in response to osmotic stress. Stress symptoms were enhanced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the precursor of PSK1 (proPSK1) or SBT3.8 resulting in higher fresh weight and improved lateral root development in the transgenic compared to wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 123
Author(s):  
Cigdem Yuce Kahraman ◽  
Ali Islek ◽  
Abdulgani Tatar ◽  
Özlem Özdemir ◽  
Adil Mardinglu ◽  
...  

Wilson disease (WD) (OMIM# 277900) is an autosomal recessive inherited disorder characterized by excess copper (Cu) storage in different human tissues, such as the brain, liver, and the corneas of the eyes. It is a rare disorder that occurs in approximately 1 in 30,000 individuals. The clinical presentations of WD are highly varied, primarily consisting of hepatic and neurological conditions. WD is caused by homozygous or compound heterozygous mutations in the ATP7B gene. The diagnosis of the disease is complicated because of its heterogeneous phenotypes. The molecular genetic analysis encourages early diagnosis, treatment, and the opportunity to screen individuals at risk in the family. In this paper, we reported a case with a novel, hotspot-located mutation in WD. We have suggested that this mutation in the ATP7B gene might contribute to liver findings, progressing to liver failure with a loss of function effect. Besides this, if patients have liver symptoms in childhood and/or are children of consanguineous parents, WD should be considered during the evaluation of the patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Chen ◽  
Haiying Wu ◽  
Chenxi Zhang ◽  
Jiarong Feng ◽  
Linqi Chen ◽  
...  

Background. Bone mineral density quantitative trait locus 18 (BMND18, OMIM #300910) is a type of early-onset osteogenesis imperfecta (OI) caused by loss-of-function mutations in the PLS3 gene, which encodes plastin-3, a key protein in the formation of actin bundles throughout the cytoskeleton. Here, we report a patient with PLS3 mutation caused BMND18 and evaluated all the reported disease-causing mutations by bioinformatic analysis. Methods. Targeted gene sequencing was performed to find the disease-causing mutation in our patient. Bioinformatic analyses mainly including homology modelling and molecular dynamics stimulation were conducted to explore the impact of the previously reported mutations on plastin-3. Results. Gene sequencing showed a novel nonsense mutation (c.745G > T, p.E249X), which locates at a highly conserved region containing residues p.240–266 (LOOP-1) in the PLS3 gene. Further bioinformatic analyses of the previously reported mutations revealed that LOOP-1 is predicted to physically connect the calponin-homology 1 (CH1) and CH2 domains of the ABD1 fragment and spatially locates within the interface of ABD1 and ABD2. It is crucial to the conformation transition and actin-binding function of plastin-3. Conclusions. This report identified a novel mutation that truncates the PLS3 gene. Moreover, bioinformatic analyses of the previous reported mutations in PLS3 gene lead us to find a critical LOOP-1 region of plastin-3 mutations at which may be detrimental to the integral conformation of plastin-3 and thus affect its binding to actin filament.


2000 ◽  
Vol 74 (19) ◽  
pp. 9028-9038 ◽  
Author(s):  
J.-B. Nousbaum ◽  
S. J. Polyak ◽  
S. C. Ray ◽  
D. G. Sullivan ◽  
A. M. Larson ◽  
...  

ABSTRACT The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. In this study, the relationship between NS5A mutations and selection pressures before and during antiviral therapy and virologic response to therapy were investigated. Full-length NS5A clones were sequenced from 20 HCV genotype 1-infected patients in a prospective, randomized clinical trial of IFN induction (daily) therapy and IFN plus ribavirin combination therapy. Pretreatment NS5A nucleotide and amino acid phylogenies did not correlate with clinical IFN responses and domains involved in NS5A functions in vitro were all well conserved before and during treatment. A consensus IFN sensitivity-determining region (ISDR237–276) sequence associated with IFN resistance was not found, although the presence of Ala245 within the ISDR was associated with nonresponse to treatment in genotype 1a-infected patients (P < 0.01). There were more mutations in the 26 amino acids downstream of the ISDR required for PKR binding in pretreatment isolates from responders versus nonresponders in both HCV-1a- and HCV-1b-infected patients (P < 0.05). In HCV-1a patients, more amino acid changes were observed in isolates from IFN-sensitive patients (P < 0.001), and the mutations appeared to be concentrated in two variable regions in the C terminus of NS5A, that corresponded to the previously described V3 region and a new variable region, 310 to 330. Selection of pretreatment minor V3 quasispecies was observed within the first 2 to 6 weeks of therapy in responders but not nonresponders, whereas the ISDR and PKR binding domains did not change in either patient response group. These data suggest that host-mediated selective pressures act primarily on the C terminus of NS5A and that NS5A can perturb or evade the IFN-induced antiviral response using sequences outside of the putative ISDR. Mechanistic studies are needed to address the role of the C terminus of NS5A in HCV replication and antiviral resistance.


2012 ◽  
Vol 287 (19) ◽  
pp. 15996-16006 ◽  
Author(s):  
Syed Feroj Ahmed ◽  
Satamita Deb ◽  
Indranil Paul ◽  
Anirban Chatterjee ◽  
Tapashi Mandal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document