scholarly journals Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control Enterotoxigenic Escherichia coli on various foods

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Nisita Dewanggana ◽  
Clare Evangeline ◽  
Maurita Delia Ketty ◽  
Diana Elizabeth Waturangi ◽  
Yogiara ◽  
...  

AbstractAmong food preservation methods, bacteriophage treatment can be a viable alternative method to overcome the drawbacks of traditional approaches. Bacteriophages are naturally occurring viruses that are highly specific to their hosts and have the capability to lyse bacterial cells, making them useful as biopreservation agents. This study aims to characterize and determine the application of bacteriophage isolated from Indonesian traditional Ready-to-Eat (RTE) food to control Enterotoxigenic Escherichia coli (ETEC) population in various foods. Phage DW-EC isolated from Indonesian traditional RTE food called dawet with ETEC as its host showed a positive result by the formation of plaques (clear zone) in the bacterial host lawn. Transmission electron microscopy (TEM) results also showed that DW-EC can be suspected to belong to the Myoviridae family. Molecular characterization and bioinformatic analysis showed that DW-EC exhibited characteristics as promising biocontrol agents in food samples. Genes related to the lytic cycle, such as lysozyme and tail fiber assembly protein, were annotated. There were also no signs of lysogenic genes among the annotation results. The resulting PHACTS data also indicated that DW-EC was leaning toward being exclusively lytic. DW-EC significantly reduced the ETEC population (P ≤ 0.05) in various food samples after two different incubation times (1 day and 6 days) in chicken meat (80.93%; 87.29%), fish meat (63.78%; 87.89%), cucumber (61.42%; 71.88%), tomato (56.24%; 74.51%), and lettuce (46.88%; 43.38%).

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Jin Seok Kim ◽  
Jungsun Park ◽  
Eunkyung Shin ◽  
Soojin Kim ◽  
Sung Suck Oh ◽  
...  

ABSTRACT We investigated an outbreak of enterotoxigenic Escherichia coli (ETEC) O159:H20 associated with the consumption of a tossed-noodle dish in a high school in 2016. Thirty-three ETEC strains isolated from clinical and food samples were genetically indistinguishable. The outbreak strains were resistant to third-generation cephalosporins and harbored a bla CTX-M-15 gene on a 97-kb self-transferable IncK plasmid. This is the first outbreak caused by CTX-M-15-producing ETEC strains.


1987 ◽  
Vol 50 (10) ◽  
pp. 832-834 ◽  
Author(s):  
BERNADETTE D. G. M. FRANCO ◽  
BEATRIZ E. C. GUTH ◽  
LUIZ R. TRABULSI

Incidence of enterotoxigenic Escherichia coli (ETEC) in foods usually consumed in the city of Sao Paulo, Brazil was determined. Raw and cooked foods of animal and vegetable origin were investigated. Enterotoxigenic strains were found in approximately 3.5% of food samples contaminated with E. coli. There was a great predominance of ETEC strains producing only LT enterotoxin. None of the isolated strains produced LT and ST simultaneously. Several serotypes were involved, and none of them was positive for colonization factors CFA-I and CFA-II. One ETEC showed resistance to some antibiotics but most were sensitive to the ones tested.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marta Nisita Dewanggana ◽  
Diana Elizabeth Waturangi ◽  
Yogiara

Abstract Objective The aims of this research were to determine the genomic properties of BI-EHEC to control Enterohemorrhagic Escherichia coli (EHEC), which was isolated from previous study. Genomic analysis of this phage is essential for the assessment of this bacteriophage for further application as food preservatives. Results Genome of BI-EHEC was successfully annotated using multiPhATE2. Structural and lytic cycle-related proteins such as head, tail, capsid, and lysozyme (lysin) were annotated. The phylogenetic tree of tail fiber protein and BRIG results showed that BI-EHEC was similar to phages of the same host in the bacteriophage genome database. There were no indications of virulence properties, antibiotic resistance genes and lysogenic protein among annotated genes which implied BI-EHEC followed a lytic life cycle. PHACTS analysis was done to confirm this notion further and yielded a lytic cycle result. Further analysis using CARD found that BI-EHEC does not contain residual ARGs per recommended parameter. Furthermore, BI-EHEC confirmed as lytic bacteriophage, making it a good candidate for biocontrol agent.


1996 ◽  
Vol 26 (2) ◽  
pp. 247-250 ◽  
Author(s):  
José Antonio Aleixo ◽  
Gladis Paim Aver

Prevalence of Escherichia coli in foods of animal origin from the city of Pelotas, Brazil, was determined. The ocurrence of enterotoxigenic (ETEC) and classic enteropathogenic (EPEC) serogroups among E. coli isolates was determined. E. coli was isolated from 68% of the food samples surveyed. Of 36 food samples tested, 11(30%) and 24(66%) were positive for EPEC and ETEC strains respectively. However, of 187 E. coli isolates tested, 30(16%) were EPEC compared to 75(40%) which were ETEC. The antibiotic resistance pattern revealed that the isolates were highly sensitive to all antibiotics tested.


1992 ◽  
Vol 29 (3) ◽  
pp. 239-246 ◽  
Author(s):  
B. Nagy ◽  
L. H. Arp ◽  
H. W. Moon ◽  
T. A. Casey

Intestinal colonization of 3-week-old weaned pigs by enterotoxigenic Escherichia coli (ETEC) strains that were originally isolated from weaned pigs with fatal diarrhea and that lacked K88, K99, F41, and 987P adhesins (4P− ETEC) was studied by histologic, immunofluorescent, and electron microscopic techniques. In the first experiment, 16 principal pigs were inoculated orogastrically with ETEC strain 2134 (serogroup 0157:H19) or 2171 (serogroup 0141:H4), and eight control pigs were not inoculated. In the second experiment, 24 principals were inoculated with ETEC strain 2134, and 12 controls were inoculated with a nonenterotoxigenic strain of E. coli. Principal and control pigs were necropsied at intervals from 24 to 72 hours after inoculation of principals to provide the tissues used for this report. Results from the two experiments and with both ETEC strains were similar and therefore were combined. Adhesion by 4P″ ETEC was demonstrated in ileum but not in cecum or colon in 22/40 principal pigs sampled at 24 to 72 hours after orogastric inoculation. Adherent bacteria were most apparent on the intestinal villi covering Peyer's patches. Only occasional adherent bacteria were detected in ileal sections from a few (4/20) of the control pigs. Adherence by 4P− ETEC was characterized by “patches” of bacteria closely associated with the lateral surfaces and less frequently with the tips and the bases of intact villi. In most cases, the adherent bacteria were separated from epithelial cell microvilli and other bacterial cells by a 50–400-nm space. Filamentous bacterial appendages bridged this space and formed a network among adjacent bacteria. Colonization of weaned pigs by the 4P− ETEC strains was characterized by preferential adhesion of bacteria to the villi covering Peyer's patches. The filamentous appendages observed between bacteria and microvilli are previously unrecognized fimbrial adhesins, which mediate colonization by these ETEC.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
George M. Ongwae ◽  
Mahendra D. Chordia ◽  
Jennie L. Cawley ◽  
Brianna E. Dalesandro ◽  
Nathan J. Wittenberg ◽  
...  

AbstractBacteriophages are highly abundant molecular machines that have evolved proteins to target the surface of host bacterial cells. Given the ubiquity of lipopolysaccharides (LPS) on the outer membrane of Gram-negative bacteria, we reasoned that targeting proteins from bacteriophages could be leveraged to target the surface of Gram-negative pathogens for biotechnological applications. To this end, a short tail fiber (GP12) from the T4 bacteriophage, which infects Escherichia coli (E. coli), was isolated and tested for the ability to adhere to whole bacterial cells. We found that, surprisingly, GP12 effectively bound the surface of Pseudomonas aeruginosa cells despite the established preferred host of T4 for E. coli. In efforts to elucidate why this binding pattern was observed, it was determined that the absence of the O-antigen region of LPS on E. coli improved cell surface tagging. This indicated that O-antigens play a significant role in controlling cell adhesion by T4. Probing GP12 and LPS interactions further using deletions of the enzymes involved in the biosynthetic pathway of LPS revealed the inner core oligosaccharide as a possible main target of GP12. Finally, we demonstrated the potential utility of GP12 for biomedical applications by showing that GP12-modified agarose beads resulted in the depletion of pathogenic bacteria from solution.


2015 ◽  
Vol 9 (08) ◽  
pp. 837-843 ◽  
Author(s):  
Diana Elizabeth Waturangi ◽  
Steven Amadeus ◽  
Yustinus Ericko Kelvianto

Introduction: Enteroaggregative Escherichia coli (EAEC) and Vibrio cholerae are common bacteria that infect people in developing countries. Nowadays, food preservation by freezing and refrigeration are very common practices that extend the shelf life of food products. Unfortunately, EAEC and V. cholerae are suspected to survive at low temperatures. Methodology: Various foods and beverages used as samples were artificially inoculated with EAEC and V. cholerae pure colonies and incubated at room temperature (27°C), refrigeration temperature (4°C), and frozen temperature (-20°C) for one week, two weeks, one month, two months, and three months. The survival of these bacteria was confirmed by polymerase chain reaction (PCR) with specific primers to detect their virulence genes (aggR for EAEC and toxR for V. cholerae) that represent the presence of these bacteria. Results: This study showed that EAEC was able to survive in all food samples used in this study for at least three months under room temperature, refrigeration temperature, and frozen temperature. V. cholerae had poor survival in almost all food samples over two months under room temperature and over three months under refrigeration temperature. V. cholerae was able to survive in all food samples for at least three months under frozen temperature. Conclusions: The survival of EAEC and V. cholerae in this study should increase our awareness of how hazardous these bacteria are. Therefore, in order to improve food safety and hygiene, advanced preservation and sterilization methods should be discovered to prevent contamination with and survival of EAEC and V. cholerae.


Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


Sign in / Sign up

Export Citation Format

Share Document