scholarly journals Automated light-induced synthesis of 89Zr-radiolabeled antibodies for immuno-positron emission tomography

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Simon Klingler ◽  
Jason P. Holland

AbstractClinical production of 89Zr-radiolabeled antibodies (89Zr-mAbs) for positron emission tomography imaging relies on the pre-conjugation of desferrioxamine B (DFO) to the purified protein, followed by isolation and characterization of the functionalized intermediate, and then manual radiosynthesis. Although highly successful, this route exposes radiochemists to a potentially large radiation dose and entails several technological and economic hurdles that limit access of 89Zr-mAbs to just a specialist few Nuclear Medicine facilities worldwide. Here, we introduce a fully automated synthesis box that can produce individual doses of 89Zr-mAbs formulated in sterile solution in < 25 min starting from [89Zr(C2O4)4]4– (89Zr-oxalate), our good laboratory practice-compliant photoactivatable desferrioxamine-based chelate (DFO-PEG3-ArN3), and clinical-grade antibodies without the need for pre-purification of protein. The automated steps include neutralization of the 89Zr-oxalate stock, chelate radiolabeling, and light-induced protein conjugation, followed by 89Zr-mAb purification, formulation, and sterile filtration. As proof-of-principle, 89ZrDFO-PEG3-azepin-trastuzumab was synthesized directly from Herceptin in < 25 min with an overall decay-corrected radiochemical yield of 20.1 ± 2.4% (n = 3), a radiochemical purity > 99%, and chemical purity > 99%. The synthesis unit can also produce 89Zr-mAbs via the conventional radiolabeling routes from pre-functionalized DFO-mAbs that are currently used in the clinic. This automated method will improve access to state-of-the-art 89Zr-mAbs at the many Nuclear Medicine and research institutions that require automated devices for radiotracer production.

2021 ◽  
Author(s):  
Simon Klingler ◽  
Jason Holland

Abstract Clinical production of 89Zr-radiolabeled antibodies (89Zr-mAbs) for positron emission tomography (PET) imaging relies on the pre-conjugation of desferrioxamine B (DFO) to the purified protein, followed by isolation and characterization of the functionalized intermediate, and then manual radiosynthesis. Although highly successful, this route exposes radiochemists to a potentially large radiation dose and entails several technological and economic hurdles that limit access of 89Zr-mAbs to just a specialist few Nuclear Medicine facilities worldwide. Here, we introduce a fully automated synthesis box that can produce individual doses of 89Zr-mAbs formulated in sterile solution in <25 min starting from [89Zr(C2O4)4]4– (89Zr-oxalate), our Good Laboratory Practice-compliant photoactivatable desferrioxamine-based chelate (DFO-PEG3-ArN3), and clinical-grade antibodies without the need for pre-purification of protein. The automated steps include neutralization of the 89Zr-oxalate stock, chelate radiolabeling, and light-induced protein conjugation, followed by 89Zr-mAb purification, formulation, and sterile filtration. As proof-of-principle, 89ZrDFO-PEG3-azepin-trastuzumab was synthesized directly from Herceptin in <25 min with an overall decay-corrected radiochemical yield of 20.1±2.4% (n=3), a radiochemical purity >99%, and chemical purity >99%. The synthesis unit can also produce 89Zr-mAbs via the conventional radiolabeling routes from pre-functionalized DFO-mAbs that are currently used in the clinic. This automated method will improve access to state-of-the-art 89Zr-mAbs at the many Nuclear Medicine and research institutions that require automated devices for radiotracer production.


2016 ◽  
Vol 52 (80) ◽  
pp. 11889-11892 ◽  
Author(s):  
Stacey E. Rudd ◽  
Peter Roselt ◽  
Carleen Cullinane ◽  
Rodney J. Hicks ◽  
Paul S. Donnelly

A squaramide ester derivative of desferrioxamine B is used to attach zirconium-89 to the antibody trastuzumab and the new conjugate is used for positron emission tomography imaging in mouse models of breast cancer.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 764
Author(s):  
Daniel F. Earley ◽  
Amaury Guillou ◽  
Dion van der Born ◽  
Alex J. Poot ◽  
Jason P. Holland

89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2 ± 1.3% (n = 3) and radiochemical purity >90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6 ± 3.6% (n = 3) with an equivalent RCP > 90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus and optimisation of the method are required before the flow process is competitive with manual reactions.


Author(s):  
Daniel F. Earley ◽  
Amaury Guillou ◽  
Dion van der Born ◽  
Alex J. Poot ◽  
Jason P. Holland

89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2&plusmn;1.3% (n = 3) and radiochemical purity &amp;gt;90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6&plusmn;3.6% (n = 3) with an equivalent RCP &amp;gt;90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus, and optimisation of the method is required before the flow process is competitive with manual reactions.


Sign in / Sign up

Export Citation Format

Share Document