scholarly journals Quantum Fourier transform to estimate drive cycles

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Vinayak Dixit ◽  
Sisi Jian

AbstractDrive cycles in vehicle systems are important determinants for energy consumption, emissions, and safety. Estimating the frequency of the drive cycle quickly is important for control applications related to fuel efficiency, emission reduction and improving safety. Quantum computing has established the computational efficiency that can be gained. A drive cycle frequency estimation algorithm based on the quantum Fourier transform is exponentially faster than the classical Fourier transform. The algorithm is applied on real world data set. We evaluate the method using a quantum computing simulator, demonstrating remarkable consistency with the results from the classical Fourier transform. Current quantum computers are noisy, a simple method is proposed to mitigate the impact of the noise. The method is evaluated on a 15 qubit IBM-q quantum computer. The proposed method for a noisy quantum computer is still faster than the classical Fourier transform.

2021 ◽  
Author(s):  
Vinayak Dixit ◽  
Sisi Jian

Abstract Drive cycles in vehicle systems are important determinants for energy consumption, emissions, and safety. Estimating the frequency of the drive cycle quickly is important for control applications related to fuel efficiency, emission reduction and improving safety. Quantum computing has established the computational efficiency that can be gained. A drive cycle frequency estimation algorithm based on the quantum Fourier transform is exponentially faster than the classical Fourier transform. The algorithm is applied on real world data set. We evaluate the method using a quantum computing simulator, demonstrating remarkable consistency with the results from the classical Fourier Transform. Current quantum computers are noisy, a simple method is proposed to mitigate the impact of the noise. The method is evaluated on a 15 qbit IBM-q quantum computer. The proposed method for a noisy quantum computer is still faster than the classical Fourier transform.


Author(s):  
Poornima Aradyamath ◽  
Naghabhushana N M ◽  
Rohitha Ujjinimatad

In this paper, we briefly review the basic concepts of quantum computation,  entanglement,  quantum cryptography and quantum fourier  transform.   Quantum algorithms like Deutsch Jozsa, Shor’s   factorization and Grover’s data search are developed using fourier  transform  and quantum computation concepts to build quantum computers.  Researchers are finding a way to build quantum computer that works more efficiently than classical computer.  Among the  standard well known  algorithms  in the field of quantum computation  and communication we  describe  mathematically Deutsch Jozsa algorithm  in detail for  2  and 3 qubits.  Calculation of balanced and unbalanced states is shown in the mathematical description of the algorithm.


2020 ◽  
Vol 120 (10) ◽  
pp. 1941-1957
Author(s):  
Futao Zhao ◽  
Zhong Yao

PurposeThe purpose of this paper is to identify the impact factors that might influence audiences' voluntary donation to content creators on the online platforms, and to build an effective prediction model by considering both content and creator-related features.Design/methodology/approachThis study collected the real-world data of content consumption from Xueqiu.com and extracted both content and creator characteristics from the data set. The best donation prediction model based on such features was determined by evaluating four prevalent classifiers with various performance metrics. Furthermore, three feature selection methods were applied to validate the robustness of the constructed model, and then the predictability of different feature groups was examined. Finally, we conducted an interpretive analysis to identify relatively important predictors.FindingsThe experimental results show that the random classifier with all extracted features outperformed other built models and achieved excellent performance, indicating the usefulness of these factors in predicting the donations. Moreover, the predictability of content features was demonstrated to be relatively better than that of creator ones. Finally, several particularly important predictors were identified such as the number of modal particles in the article.Originality/valueThis study is among the first to investigate what factors might drive customers' voluntary donation to content contributors on social websites. Different from previous studies focusing on live video streaming, we expand the research vision by examining the donations to user-generated text content, calling for attention to other important topics in the burgeoning industry.


2006 ◽  
Vol 14 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Paul Massey ◽  
John A. Clark ◽  
Susan Stepney

We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350008
Author(s):  
CHEN-FU CHIANG

Due to the great difficulty in scalability, quantum computers are limited in the number of qubits during the early stages of the quantum computing regime. In addition to the required qubits for storing the corresponding eigenvector, suppose we have additional k qubits available. Given such a constraint k, we propose an approach for the phase estimation for an eigenphase of exactly n-bit precision. This approach adopts the standard recursive circuit for quantum Fourier transform (QFT) in [R. Cleve and J. Watrous, Fast parallel circuits for quantum fourier transform, Proc. 41st Annual Symp. on Foundations of Computer Science (2000), pp. 526–536.] and adopts classical bits to implement such a task. Our algorithm has the complexity of O(n log k), instead of O(n2) in the conventional QFT, in terms of the total invocation of rotation gates. We also design a scheme to implement the factorization algorithm by using k available qubits via either the continued fractions approach or the simultaneous Diophantine approximation.


2021 ◽  
Vol 11 (24) ◽  
pp. 11784
Author(s):  
Hashem Alyami ◽  
Mohd Nadeem ◽  
Abdullah Alharbi ◽  
Wael Alosaimi ◽  
Md Tarique Jamal Ansari ◽  
...  

The primary goal of this research study, in the field of information technology (IT), is to improve the security and durability of software. A quantum computing-based security algorithm springs quite a lot of symmetrical approaches and procedures to ensure optimum software retreat. The accurate assessment of software’s durability and security is a dynamic aspect in assessing, administrating, and controlling security for strengthening the features of security. This paper essentially emphasises the demarcation and depiction of quantum computing from a software security perspective. At present, different symmetrical-based cryptography approaches or algorithms are being used to protect different government and non-government sectors, such as banks, healthcare sectors, defense, transport, automobiles, navigators, weather forecasting, etc., to ensure software durability and security. However, many crypto schemes are likely to collapse when a large qubit-based quantum computer is developed. In such a scenario, it is necessary to pay attention to the security alternatives based on quantum computing. Presently, the different factors of software durability are usability, dependability, trustworthiness, and human trust. In this study, we have also classified the durability level in the second stage. The intention of the evaluation of the impact on security over quantum duration is to estimate and assess the security durability of software. In this research investigation, we have followed the symmetrical hybrid technique of fuzzy analytic hierarchy process (FAHP) and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS). The obtained results, and the method used in this estimation, would make a significant contribution to future research for organising software security and durability (SSD) in the presence of a quantum computer.


Author(s):  
M. Suhail Zubairy

This chapter deals with some of the most prominent successes of quantum computing. The most well-known quantum computing algorithm, Shor’s algorithm for factoring a number in its prime factors, is discussed in details. The key to Shor’s algorithm is the quantum Fourier transform that is explained with the help of simple examples. The role of quantum entanglement is also discussed. The next important quantum computing algorithm is Grover’s algorithm that helps in searching an item in an unsorted database. This algorithm is motivated by first discussing a quantum shell game in which a pea hidden under one of the four shells is found in one measurement with certainty each time. This amazing result is then generalized to an arbitrary number of objects and Grover’s algorithm.


2021 ◽  
Author(s):  
Mario Mastriani

Abstract This study demonstrates entanglement can be exclusively constituted by quantum Fourier transform (QFT) blocks. A bridge between entanglement and QFT will allow incorporating a spectral analysis to the already traditional temporal approach of entanglement, which will result in the development of new more performant, and fault-tolerant protocols to be used in quantum computing as well as quantum communication, with particular emphasis in the future quantum Internet.


2013 ◽  
Vol 13 (1) ◽  
pp. 1575-1607 ◽  
Author(s):  
K. A. Tereszchuk ◽  
D. P. Moore ◽  
J. J. Harrison ◽  
C. D. Boone ◽  
M. Park ◽  
...  

Abstract. Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short life-time and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Version 3.0 data set. We report measurements of PAN in Boreal biomass burning plumes recorded during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign. The retrieval method employed and errors analysis are described in full detail. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) ENVIronmental SATellite (ENVISAT). Three ACE-FTS occultations containing measurements of Boreal biomass burning outflows, recorded during BORTAS, were identified as having coincident measurements with MIPAS. In each case, the MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN. The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~5 to 20 km. A strong seasonality is clearly observed for PAN concentrations in the global UTLS. Since the principal source of PAN in the UTLS is due to lofted biomass burning emissions from the pyroconvective updrafts created by large fires, the observed seasonality in enhanced PAN coincides with fire activity in different geographical regions throughout the year. This work is part of an in-depth investigation that is being conducted in an effort to study the aging and chemical evolution of biomass burning emissions in the UTLS by remote, space-borne measurements made by ACE-FTS to further our understanding of the impact of pyrogenic emissions on atmospheric chemistry. Included in this study will be the addition of new, pyrogenic, volatile organic hydrocarbons (VOCs) and oxygenated volatile organic compounds (OVOCs) to expand upon the already extensive suite of molecules retrieved by ACE-FTS to aid in elucidating biomass burning plume chemistry in the free troposphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Mastriani

AbstractThis study demonstrates entanglement can be exclusively constituted by quantum Fourier transform (QFT) blocks. A bridge between entanglement and QFT will allow incorporating a spectral analysis to the already traditional temporal approach of entanglement, which will result in the development of new more performant, and fault-tolerant protocols to be used in quantum computing as well as quantum communication, with particular emphasis in the future quantum Internet.


Sign in / Sign up

Export Citation Format

Share Document