scholarly journals INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin Gajdošík ◽  
Karl Landheer ◽  
Kelley M. Swanberg ◽  
Christoph Juchem

AbstractIn vivo magnetic resonance spectroscopy (MRS) is a powerful tool for biomedical research and clinical diagnostics, allowing for non-invasive measurement and analysis of small molecules from living tissues. However, currently available MRS processing and analytical software tools are limited in their potential for in-depth quality management, access to details of the processing stream, and user friendliness. Moreover, available MRS software focuses on selected aspects of MRS such as simulation, signal processing or analysis, necessitating the use of multiple packages and interfacing among them for biomedical applications. The freeware INSPECTOR comprises enhanced MRS data processing, simulation and analytical capabilities in a one-stop-shop solution for a wide range of biomedical research and diagnostic applications. Extensive data handling, quality management and visualization options are built in, enabling the assessment of every step of the processing chain with maximum transparency. The parameters of the processing can be flexibly chosen and tailored for the specific research problem, and extended confidence information is provided with the analysis. The INSPECTOR software stands out in its user-friendly workflow and potential for automation. In addition to convenience, the functionalities of INSPECTOR ensure rigorous and consistent data processing throughout multi-experiment and multi-center studies.

2020 ◽  
Vol 21 (7) ◽  
pp. 2442
Author(s):  
Jyoti Singh Tomar ◽  
Jun Shen

Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3−. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3− catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.


2018 ◽  
Author(s):  
Lydia M Le Page ◽  
Oliver J Rider ◽  
Andrew J Lewis ◽  
Victoria Noden ◽  
Matthew Kerr ◽  
...  

Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Non-invasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon-13 magnetic resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13C MRS can be used to assess the in vivo response of cardiac metabolism to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), one week or three weeks of hypoxia. In vivo MRS of hyperpolarized [1-13C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. No significant changes in heart rate, respiration rate, or ejection fraction were observed at any timepoint. Haematocrit was elevated after one week and three weeks of hypoxia. Thirty minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas one or three weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1-13C] pyruvate into [1-13C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one-week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism was comparable to that observed in normoxia. We have successfully visualized of the effects of systemic hypoxia on cardiac metabolism using hyperpolarized 13C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the cardiometabolic effects of hypoxia in disease.


2008 ◽  
Vol 20 (2) ◽  
pp. 56-71 ◽  
Author(s):  
Clarissa Trzesniak ◽  
David Araújo ◽  
José Alexandre S. Crippa

Objective:Magnetic resonance spectroscopy (MRS) is a non-invasive in vivo method used to quantify metabolites that are relevant to a wide range of brain processes. This paper briefly describes neuroimaging using MRS and provides a systematic review of its application to anxiety disorders.Method:A literature review was performed in the PubMed, Lilacs and Scielo databases using the keywords spectroscopy and anxiety disorder. References of selected articles were also hand-searched for additional citations.Results:Recent studies have shown that there are significant metabolic differences between patients with anxiety disorders and healthy controls in various regions of the brain. Changes were mainly found in N-acetylaspartate, which is associated with neuronal viability, but some of them were also seen in creatine, a substance that is thought to be relatively constant among individuals with different pathological conditions.Conclusions:MRS is a sophisticated neuroimaging technique that has provided useful insights into the biochemical and neurobiological basis of many anxiety disorders. Nevertheless, its utilization in some anxiety disorders is still modest, particularly social phobia and generalised anxiety. Although it is an extremely useful advance in neuroimaging, further research in other brain areas and patient populations is highly advisable.


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


NeuroImage ◽  
2004 ◽  
Vol 22 (1) ◽  
pp. 381-386 ◽  
Author(s):  
E Adalsteinsson ◽  
R.E Hurd ◽  
D Mayer ◽  
N Sailasuta ◽  
E.V Sullivan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document