scholarly journals Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.

2016 ◽  
Vol 13 (19) ◽  
pp. 5649-5659 ◽  
Author(s):  
Juliane Jacob ◽  
Tina Sanders ◽  
Kirstin Dähnke

Abstract. In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of δ15N–NH4+ and δ15N–NO2− in the Elbe River. In concert with changes in suspended particulate matter (SPM) and δ15N SPM, as well as nitrate concentration, δ15N–NO3− and δ18O–NO3−, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol L−1, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. δ15N–NH4+ values increased up to 12 ‰, and δ15N–NO2− ranged from −8.0 to −14.2 ‰. Based on this, we calculated an apparent isotope effect 15ε of −10.0 ± 0.1 ‰ during net nitrite consumption, as well as an isotope effect 15ε of −4.0 ± 0.1 ‰ and 18ε of −5.3 ± 0.1 ‰ during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.


1975 ◽  
Vol 53 (23) ◽  
pp. 3513-3525 ◽  
Author(s):  
Peter Schmid ◽  
Arthur Newcombe Bourns

Kinetic isotope effects have been determined for the E2 reactions of a series of 2-phenylethyldimethylanilinium salts containing substituents in the aniline ring with sodium ethoxide in ethanol at 40 °C. The nitrogen isotope effect, (k14/k15−1)100, is not very sensitive to substituent changes but appears to increase slightly with increasing electron-withdrawing ability of the substituents, i.e., 1.19 ± 0.07, 1.13 ± 0.06, 1.12 ± 0.08, 1.30 ± 0.07, and 1.32 ± 0.06 for p-OCH3, p-CH3, p-H, p-Cl, and, m-CF3, respectively. The hydrogen–deuterium isotope effects pass through a minimum in the region of the unsubstituted compound and increase both with increasing electron-donating as well as with electron-withdrawing power of the substituents, i.e. kH/kD = 4.70 ± 0.06, 4.61 ± 0.04, 4.51 ± 0.04, 4.53 ± 0.09, 5.00 ± 0.07, and 5.39 ± 0.07 for p-OCH3, p-CH3, p-H, p-Cl, m-CF3, and p-CF3, respectively. The results are discussed in terms of recent theoretical treatments of the effect of structural variations in the reactants on the nature of the transition state of E2 elimination reactions. The conclusion is reached that the transition states in the present reaction series can be characterized as 'central with slight carbanion character' and that the effect of a change in the ability of the leaving group on the structure of the transition state manifests itself mainly in the direction perpendicular to the reaction coordinate. A simple novel hypothesis is formulated which emphasizes the importance of the location of the transition state in a More O'Ferrall-type potential energy diagram in determining its sensitivity to structural changes in the reactants.


2007 ◽  
Vol 34 (11) ◽  
pp. 1049 ◽  
Author(s):  
Guillaume Tcherkez ◽  
Graham D. Farquhar

While photosynthetically evolved O2 has been repeatedly shown to have nearly the same oxygen isotope composition as source water so that there is no corresponding 16O/18O isotope effect, some recent 18O-enrichment studies suggest that a large isotope effect may occur, thus feeding a debate in the literature. Here, the classical theory of isotope effects was applied to show that a very small isotope effect is indeed expected during O2 production. Explanations of the conflicting results are briefly discussed.


2020 ◽  
Author(s):  
Paul Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Jing Wei ◽  
Joachim Mohn ◽  
...  

<p>Stable isotope measurements of nitrogen and oxygen in nitrogen-containing molecules provide important constraints on the sources, sinks and pools of these molecules in the environment. Anammox is one of two known biological processes for converting fixed nitrogen to N<sub>2</sub>, and through its consumption of ammonium and nitrite and production of nitrate, it impacts the supply of a wide variety of fixed N molecules. Nevertheless, the isotope fractionations associated with the various anammox-associated redox reactions remain poorly constrained. We have measured the isotope effects of anammox in microbial communities enriched for the purpose of nitrogen removal from wastewater by anammox. In this system, we can replicate the ecological complexity exhibited in environmental settings, while also performing controlled experiments. We find that under a variety of conditions, the nitrogen isotope effect for the anaerobic oxidation of ammonium in this system (NH<sub>4</sub><sup>+ </sup>to N<sub>2</sub>) is between 19‰ and 32‰, that for the reduction of nitrite (NO<sub>2</sub><sup>–</sup> to N<sub>2</sub>) is between 7‰ and 18‰, and that for the production of nitrate (NO<sub>2</sub><sup>–</sup> to NO<sub>3</sub><sup>–</sup>) is between -16‰ and -43‰. We propose that these ranges reflect both (1) a mixture of signals from different anammox-performing species and (2) variation of the isotope effect associated with the anammox process within a given microbial community under different conditions. We seek to understand further what factors control this variability to better interpret stable isotope measurements of N-bearing molecules in environmental settings.</p>


1999 ◽  
Vol 65 (3) ◽  
pp. 989-994 ◽  
Author(s):  
Carol C. Barford ◽  
Joseph P. Montoya ◽  
Mark A. Altabet ◽  
Ralph Mitchell

ABSTRACT Nitrogen stable-isotope compositions (δ15N) can help track denitrification and N2O production in the environment, as can knowledge of the isotopic discrimination, or isotope effect, inherent to denitrification. However, the isotope effects associated with denitrification as a function of dissolved-oxygen concentration and their influence on the isotopic composition of N2O are not known. We developed a simple steady-state reactor to allow the measurement of denitrification isotope effects in Paracoccus denitrificans. With [dO2] between 0 and 1.2 μM, the N stable-isotope effects of NO3 − and N2O reduction were constant at 28.6‰ ± 1.9‰ and 12.9‰ ± 2.6‰, respectively (mean ± standard error,n = 5). This estimate of the isotope effect of N2O reduction is the first in an axenic denitrifying culture and places the δ15N of denitrification-produced N2O midway between those of the nitrogenous oxide substrates and the product N2 in steady-state systems. Application of both isotope effects to N2O cycling studies is discussed.


1974 ◽  
Vol 52 (5) ◽  
pp. 749-760 ◽  
Author(s):  
P. J. Smith ◽  
A. N. Bourns

Kinetic isotope effects have been determined for the E2 reaction of some 2-arylethyltrimethyl-ammonium ions with ethoxide in ethanol at 40°. The nitrogen effect, (k14/k15 − 1)100, decreased with increasing electron-withdrawing ability of the para substituent; i.e. 1.37, 1.33, 1.14, and 0.88 for p-OCH3, p-H, p-Cl, and p-CF3, respectively. Furthermore, the primary hydrogen–deuterium isotope effects increased for the same substituents, respectively; i.e. kH/kD = 2.64, 3.23, 3.48, and 4.16. A large positive ρ value of 3.66 was found as well as a small secondary α-deuterium effect of 1.02 for p-H. In addition, the nitrogen isotope effect decreased with increasing strength of the abstracting base for the reaction of ethyltrimethylammonium ion; i.e. 1.86 and 1.41 at 60° for reaction with EtO−–EtOH and t-BuO−–t-BuOH, respectively. The results are discussed in terms of recent theoretical treatments of the effect of base, substituents, and nature of the leaving group on the nature of the transition state for an E2 process. The conclusion is reached that any structural change which causes one bond (C—H) to be weakened more at the transition state will have a corresponding effect on the other bond [Formula: see text]


1981 ◽  
Vol 59 (21) ◽  
pp. 3090-3094 ◽  
Author(s):  
Karl R. Kopecky ◽  
Michael C. Hall

There is an inverse isotope effect in the reaction between 2,2-diphenyl-1-picrylhydrazyl DPPH and 2,6-dideuteriostyrene of 0.75 ± 0.07 at 75 °C in degassed neat styrene. This result is consistent with the proposal that the reaction involves hydrogen transfer to DPPH from a Diels–Alder dimer of styrene. The rate constant for dimerization of styrene to this dimer is calculated to be 1.8 × 10−10 L mol−1 s−1 at 75 °C.


1960 ◽  
Vol 38 (2) ◽  
pp. 222-232 ◽  
Author(s):  
J. A. Llewellyn ◽  
R. E. Robertson ◽  
J. M. W. Scott

The α-deuterium isotope effect has been examined for the solvolysis of a series of esters containing a fully deuterated methyl group. The possible sources of the effect have been divided into "thermodynamic" effects which appear to favor more rapid reaction of the protium compound and "zero point" effects where stiffening of out-of-plane vibrations may account for the direction of the observed isotope effects. It appears that the inverse isotope effect may be a measure of the spatial restrictions placed on the hydrogen atoms on the carbon atom in the activated complex.


Sign in / Sign up

Export Citation Format

Share Document