scholarly journals Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saleh Kalantari ◽  
James D. Rounds ◽  
Julia Kan ◽  
Vidushi Tripathi ◽  
Jesus G. Cruz-Garza

AbstractImmersive virtual environments (VEs) are increasingly used to evaluate human responses to design variables. VEs provide a tremendous capacity to isolate and readily adjust specific features of an architectural or product design. They also allow researchers to safely and effectively measure performance factors and physiological responses. However, the success of this form of design-testing depends on the generalizability of response measurements between VEs and real-world contexts. At the current time, there is very limited research evaluating the consistency of human response data across identical real and virtual environments. Rendering tools were used to precisely replicate a real-world classroom in virtual space. Participants were recruited and asked to complete a series of cognitive tests in the real classroom and in the virtual classroom. Physiological data were collected during these tests, including electroencephalography (EEG), electrocardiography (ECG), electrooculography (EOG), galvanic skin response (GSR), and head acceleration. Participants’ accuracy on the cognitive tests did not significantly differ between the real classroom and the identical VE. However, the participants answered the tests more rapidly in the VE. No significant differences were found in eye blink rate and heart rate between the real and VR settings. Head acceleration and GSR variance were lower in the VE setting. Overall, EEG frequency band-power was not significantly altered between the real-world classroom and the VE. Analysis of EEG event-related potentials likewise indicated strong similarity between the real-world classroom and the VE, with a single exception related to executive functioning in a color-mismatch task.

2004 ◽  
Vol 4 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Thomas Reuding ◽  
Pamela Meil

The predictive value and the reliability of evaluations made in immersive projection environments are limited when compared to the real world. As in other applications of numerical simulations, the acceptance of such techniques does not only depend on the stability of the methods, but also on the quality and credibility of the results obtained. In this paper, we investigate the predictive value of virtual reality and virtual environments when used for engineering assessment tasks. We examine the ergonomics evaluation of a vehicle interior, which is a complex activity relying heavily on know-how gained from personal experience, and compare performance in a VE with performance in the real world. If one assumes that within complex engineering processes certain types of work will be performed by more or less the same personnel, one can infer that a fairly consistent base of experience-based knowledge exists. Under such premises and if evaluations are conducted as comparisons within the VE, we believe that the reliability of the assessments is suitable for conceptual design work. Despite a number of unanswered questions at this time we believe this study leads to a better understanding of what determines the reliability of results obtained in virtual environments, thus making it useful for optimizing virtual prototyping processes and better utilization of the potential of VR and VEs in company work processes.


2019 ◽  
Vol 9 (9) ◽  
pp. 1797
Author(s):  
Chen ◽  
Lin

Augmented reality (AR) is an emerging technology that allows users to interact with simulated environments, including those emulating scenes in the real world. Most current AR technologies involve the placement of virtual objects within these scenes. However, difficulties in modeling real-world objects greatly limit the scope of the simulation, and thus the depth of the user experience. In this study, we developed a process by which to realize virtual environments that are based entirely on scenes in the real world. In modeling the real world, the proposed scheme divides scenes into discrete objects, which are then replaced with virtual objects. This enables users to interact in and with virtual environments without limitations. An RGB-D camera is used in conjunction with simultaneous localization and mapping (SLAM) to obtain the movement trajectory of the user and derive information related to the real environment. In modeling the environment, graph-based segmentation is used to segment point clouds and perform object segmentation to enable the subsequent replacement of objects with equivalent virtual entities. Superquadrics are used to derive shape parameters and location information from the segmentation results in order to ensure that the scale of the virtual objects matches the original objects in the real world. Only after the objects have been replaced with their virtual counterparts in the real environment converted into a virtual scene. Experiments involving the emulation of real-world locations demonstrated the feasibility of the proposed rendering scheme. A rock-climbing application scenario is finally presented to illustrate the potential use of the proposed system in AR applications.


2003 ◽  
Vol 36 (12) ◽  
pp. 105-110
Author(s):  
Omar A.A. Orqueda ◽  
José Figueroa ◽  
Osvaldo E. Agamennoni

2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


Author(s):  
Hannah M. Solini ◽  
Ayush Bhargava ◽  
Christopher C. Pagano

It is often questioned whether task performance attained in a virtual environment can be transferred appropriately and accurately to the same task in the real world. With advancements in virtual reality (VR) technology, recent research has focused on individuals’ abilities to transfer calibration achieved in a virtual environment to a real-world environment. Little research, however, has shown whether transfer of calibration from a virtual environment to the real world is similar to transfer of calibration from a virtual environment to another virtual environment. As such, the present study investigated differences in calibration transfer to real-world and virtual environments. In either a real-world or virtual environment, participants completed blind walking estimates before and after experiencing perturbed virtual optic flow via a head-mounted virtual display (HMD). Results showed that individuals calibrated to perturbed virtual optic flow and that this calibration carried over to both real-world and virtual environments in a like manner.


Author(s):  
Alistair Sutcliffe ◽  
Oscar de Bruijn ◽  
Brian Gault ◽  
Terrence Fernando ◽  
Kevin Tan

2002 ◽  
Vol 6 (2) ◽  
pp. 63-74 ◽  
Author(s):  
A. Crabtree ◽  
T. Rodden ◽  
J. Mariani

2004 ◽  
Vol 13 (5) ◽  
pp. 560-571 ◽  
Author(s):  
William B. Thompson ◽  
Peter Willemsen ◽  
Amy A. Gooch ◽  
Sarah H. Creem-Regehr ◽  
Jack M. Loomis ◽  
...  

In the real world, people are quite accurate in judging distances to locations in the environment, at least for targets resting on the ground plane and distances out to about 20 m. Distance judgments in visually immersive environments are much less accurate. Several studies have now shown that in visually immersive environments, the world appears significantly smaller than intended. This study investigates whether or not the compression in apparent distances is the result of the low-quality computer graphics utilized in previous investigations. Visually directed triangulated walking was used to assess distance judgments in the real world and in three virtual environments with graphical renderings of varying quality.


1997 ◽  
Vol 6 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Max M. North ◽  
Sarah M. North ◽  
Joseph R. Coble

Current computer and display technology allows the creation of virtual environment scenes that can be utilized for treating a variety of psychological disorders. This case study demonstrates the effectiveness of virtual environment desensitization (VED) in the treatment of a subject who suffered from fear of flying, a disorder that affects a large number of people. The subject, accompanied by a virtual therapist, was placed in the cockpit of a virtual helicopter and flown over a simulated city for five sessions. The VED treatment resulted in both a significant reduction of anxiety symptoms and the ability to face the phobic situations in the real world.


Disputatio ◽  
2019 ◽  
Vol 11 (55) ◽  
pp. 437-451
Author(s):  
Mark Silcox

AbstractIn “The Virtual and the Real,” David Chalmers argues that there is an epistemic and ontological parity between VR and ordinary reality. My argument here is that, whatever the plausibility of these claims, they provide no basis for supposing that there is a similar parity of value. Careful reflection upon certain aspects of the transition that individuals make from interacting with real-world, physical environments to interacting with VR provides a basis for thinking that, to the extent that there are good reasons to deny the reality of virtual objects, there are also reasons to place a correspondingly higher value upon the experience of interacting with a VR environment. Chalmers’ assumption to the contrary arises from a subtle misrepresentation of how the phenomenon of cognitive penetration works in the perception of virtual objects, and from an unwillingness to acknowledge how our attitudes toward virtual environments are conditioned by the values we adopt when engaged in gameplay.


Sign in / Sign up

Export Citation Format

Share Document