scholarly journals Life cycle assessment and energy comparison of aseptic ohmic heating and appertization of chopped tomatoes with juice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sami Ghnimi ◽  
Amin Nikkhah ◽  
Jo Dewulf ◽  
Sam Van Haute

AbstractThe energy balance and life cycle assessment (LCA) of ohmic heating and appertization systems for processing of chopped tomatoes with juice (CTwJ) were evaluated. The data included in the study, such as processing conditions, energy consumption, and water use, were experimentally collected. The functional unit was considered to be 1 kg of packaged CTwJ. Six LCA impact assessment methodologies were evaluated for uncertainty analysis of selection of the impact assessment methodology. The energy requirement evaluation showed the highest energy consumption for appertization (156 kWh/t of product). The energy saving of the ohmic heating line compared to the appertization line is 102 kWh/t of the product (or 65% energy saving). The energy efficiencies of the appertization and ohmic heating lines are 25% and 77%, respectively. Regarding the environmental impact, CTwJ processing and packaging by appertization were higher than those of ohmic heating systems. In other words, CTwJ production by the ohmic heating system was more environmentally efficient. The tin production phase was the environmental hotspot in packaged CTwJ production by the appertization system; however, the agricultural phase of production was the hotspot in ohmic heating processing. The uncertainty analysis results indicated that the global warming potential for appertization of 1 kg of packaged CTwJ ranges from 4.13 to 4.44 kg CO2eq. In addition, the global warming potential of the ohmic heating system ranges from 2.50 to 2.54 kg CO2eq. This study highlights that ohmic heating presents a great alternative to conventional sterilization methods due to its low environmental impact and high energy efficiency.

Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 197-204
Author(s):  
Marudut Sirait

Tujuan dari makalah ini adalah untuk mengidentifikasi potensi dampak lingkungan selama proses produksi gula tebu di Jawa Timur Indonesia. Studi ini menggunakan pendekatan Life Cycle Assesment (LCA) untuk mengevaluasi dampak  lingkungan selama proses produksi gula dari tebu. Analisis LCA fokus pada pengolahan tebu menjadi gula, yang terdiri dari proses persiapan, proses miling, centrifugal separation, proses clarification, proses evaporation, dan proses crystalization. Hasil Life Cycle Impact Assessment (LCIA) diekpresikan dengan metode EDIB 2003, menunjukkan bahwa dampak lingkungan yang paling signifikan terhadap penurunan kualitas lingkungan adalah  global warming, acidification, eutrofikasi, human toxicity air, dan ozone depletion. Selanjutnya, proses produksi gula yang paling besar kontribusnya pada dampak lingkungan adalah proses penggilingan/miling, diikuti oleh proses centrifugal seperation,proses clarification, proses crystallization,proses evaporation, dan proses preperation untuk semua kategori dampak lingkungan.Life Cycle Assessment Study of Sugarcane: The case of East JavaABSTRACTThe purpose of this paper is to identify potential environmental impacts during the process of sugarcane production in East Java, Indonesia. This study utilized Life Cycle Assessment (LCA) approach to evaluate the environmental impact during the manufacturing of sugar cane. LCA analysis focuses on processing sugarcane, which consists of the preparation process, the milling process, centrifugal separation, the clarification process, the evaporation process, and the crystalization process. The Life Cycle Impact Assessment (LCIA) was expressed by the EDIB 2003 method. The result showed that the most significant environmental impacts on environmental degradation were global warming, acidification, eutrophication, human toxicity of water, and ozone depletion. Furthermore, the production process with the greatest contribution to environmental impact were the miling process, followed by centrifugal seperation process, clarification process, crystallization process, evaporation process, and preperation process for all categories of environmental impacts.Keywords: Environmental Impact, Energy, Sugarcane, Global Warming, Life Cycle Assessment


2021 ◽  
Author(s):  
BURÇİN ATILGAN TÜRKMEN

Abstract A massive increase in the use and production of masks worldwide has been seen in the current COVID-19 pandemic, which has contributed to reducing the transmission of the virus globally. This paper aims to evaluate the environmental impacts of disposable medical masks using the Life Cycle Assessment (LCA) method, first for the selected functional unit related to the manufacturing of one disposable medical mask and then for the global manufacturing of this type of mask in 2020. The inventory data was constructed directly from the industry. The system boundaries include the fabric, nose wire, and ear loops parts, transportation of materials, body making, ultrasonic vending, and packaging steps. The results suggest that the global warming potential of a disposable medical mask is 0.02 g CO2-Eq. for which the main contributor is the packaging step (44%) followed by the life cycle of fabric (27%), and nose wire (14%) parts. In total, 52 billion disposable medical masks used worldwide consumes 25 TJ of energy in 2020. The global warming potential of disposable medical masks supplied in a year of the COVID-19 pandemic is 1.1 Mt CO2 eq., equivalent to around 1.3 billion return flights from Istanbul to New York. This paper assessed the hotspots in the medical mask, allowing for a significant reduction in the environmental impact of mask use. This can be used as a roadmap for future mask designs.


2021 ◽  
Vol 22 (2) ◽  
pp. 147-161
Author(s):  
Rahmah Arfiyah Ula ◽  
Agus Prasetya ◽  
Iman Haryanto

ABSTRACT The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment. Keywords: environmental impact, landfill, life cycle assessment, waste management   ABSTRAK Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3. Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir


2011 ◽  
Vol 471-472 ◽  
pp. 999-1004 ◽  
Author(s):  
Mariam Al-Ma'adeed ◽  
Gozde Ozerkan ◽  
Ramazan Kahraman ◽  
Saravanan Rajendran ◽  
Alma Hodzic

Although recycled polymers and reinforced polymer composites have been in use for many years there is little information available on their environmental impacts. The goal of the present study is to analyze the environmental impact of new composite materials obtained from the combination of recycled thermoplastics (polypropylene [PP] and polyethylene [PE]) with mineral fillers like talc and with glass fiber. The environmental impact of these composite materials is compared to the impact of virgin PP and PE. The recycled and virgin materials were compared using life cycle assessment method according to their environmental effects. Within the scope of the study, GaBi software was used for Life Cycle Assessment (LCA) analysis. From cradle-to-grave life cycle inventory studies were performed for 1 kg of each of the thermoplastics. Landfilling was considered as reference scenario and compared with filled recycled plastics. A quantitative impact assessment was performed for four environmental impact categories, global warming (GWP) over a hundred years, human toxicity (HTP), abiotic depletion (ADP) and acidification potential (AP) were taken into consideration during LCA. In the comparison of recycled and virgin polymers, it was seen that recycling has lower environmental effect for different impact assessment methods like acidification potential, abiotic depletion, human toxicity and global warming.


2016 ◽  
Vol 13 (10) ◽  
pp. 7212-7225 ◽  
Author(s):  
Zhao Xu ◽  
Yang Zhang ◽  
Heng Li ◽  
Qiming Li

Energy consumption by and emissions from buildings contribute greatly to environmental degradation. Currently, an important tool in the study of architectural conservation design is LCA (life-cycle assessment), with the goal of minimizing energy consumption and environmental impact. The research suggests a method to apply LCA analysis and BIM technology to design 3D BIM models and define the relationship between BIM elements and architectural materials. The obvious advantages of combining BIM with LCA have resulted in its wide use for building life cycle assessment. The study propose here quantitative analysis of environmental impact by construction and build an index database for environmental impact assessment of building projects based on analytical hierarchy process. The design plan of the Teaching and Research Building of a University in Nanjing China is taken as the example to calculate energy consumption in response models formed from construction data. From these modeled calculations, then the key environmental impact factors were analyzed. The objective is to suggest an integrated solution to BIM-based environmental impact assessment of building construction and also provide a theoretical support for optimized building design. This case study demonstrates the utility of BIM when performing LCA, providing most of the information needed to perform LCA.


2021 ◽  
Vol 13 (20) ◽  
pp. 11285
Author(s):  
Oscar Lagnelöv ◽  
Gunnar Larsson ◽  
Anders Larsolle ◽  
Per-Anders Hansson

There is an increased interest for battery electric vehicles in multiple sectors, including agriculture. The potential for lowered environmental impact is one of the key factors, but there exists a knowledge gap between the environmental impact of on-road vehicles and agricultural work machinery. In this study, a life cycle assessment was performed on two smaller, self-driving battery electric tractors, and the results were compared to those of a conventional tractor for eleven midpoint characterisation factors, three damage categories and one weighted single score. The results showed that compared to the conventional tractor, the battery electric tractor had a higher impact in all categories during the production phase, with battery production being a majority contributor. However, over the entire life cycle, it had a lower impact in the weighted single score (−72%) and all three damage categories; human health (−74%), ecosystem impact (−47%) and resource scarcity (−67%). The global warming potential over the life cycle of the battery electric tractor was 102 kg CO2eq ha−1 y−1 compared to 293 kg CO2eq ha−1 y−1 for the conventional system. For the global warming potential category, the use phase was the most influential and the fuel used was the single most important factor.


2018 ◽  
Vol 74 ◽  
pp. 05005
Author(s):  
Laurence ◽  
Josephine Kasena

Every year, the total of plastic industry in Indonesia grows rapidly. Not only giving positive effects on economic, but industrial development also causing a negative impact on the environment. Those negative impacts are caused by inefficiently using of resources and industrial waste which could pollute the environment. Therefore, it is necessary to calculate the impact itself by using the Life Cycle Assessment (LCA) method. The LCA could help us to take better decision to improve the production process and products which could minimize the energy consumption and resources. PT XYZ is a plastic injection company. This company hasn't collected, calculated and analysed their products and production process which may contribute to environmental damage. Therefore, this study will collect the data about the potential environmental impact which caused by the product of PT XYZ. LCA was performed at plastic car battery container type "X" and type "Y" using IMPACT 2002+ method in SimaPro8 software. The result of data calculation showing that the potential environmental impact is more dominant in these categories: respiratory inorganics, non-renewable energy, and global warming. The component which caused the greatest potential for respiratory inorganics and global warming is coming from electrical energy consumption (lignite).


2020 ◽  
Vol 14 (3) ◽  
pp. 559-579
Author(s):  
Marwa Dabaieh ◽  
Nargessadat Emami ◽  
Jukka Taneli Heinonen ◽  
Björn Marteinsson

PurposeOver the last eight years, the Middle East has experienced a series of high profile conflicts which have resulted in over 5.6 million Syrians forced to migrate to neighbouring countries within the MENA (Middle East and North Africa) region or to Europe. That have exerted huge pressure on hosting countries trying to accommodate refugees in decent shelters and in quick manner. Temporary shelters normally carry a high environmental burden due to their short lifespan, and the majority are fabricated from industrialised materials. This study assesses the carbon impact for a minus carbon experimental refugee house in Sweden using life cycle assessment (LCA) as tool. SimaPro and GaBi software were used for the calculations and the ReCiPe midpoint method for impact assessment. The results show that using local plant-based materials such as straw, reeds and wood, together with clay dug from close to the construction site, can drastically reduce the carbon footprint of temporary shelters and even attain a negative carbon impact of 226.2 kg CO2 eq/m2. Based on the results of the uncertainty importance analysis, the overall global warming potential impact without and with sequestration potential are mostly sensitive to the variability of the GWP impact of wood fibre insulation.Design/methodology/approachThe methodology is designed to calculate the GWP impact of the refugee house over its entire life cycle (production, operation and maintenance and end of life). Then, the sensitivity analysis was performed to explore the impact of input uncertainties (selection of material from the database and the method) on the total GWP impact of the refugee house with and without sequestration. The ISO standards (International Standard 14040 2006; International Standard 14044 2006) divide the LCA framework into four steps of Goal and scope, inventory analysis, impact assessment, and interpretation.FindingsThis study has shown an example for proof of concept for a low impact refugee house prototype using straw, reeds, clay, lime and wood as the principle raw materials for building construction. Using natural materials, especially plant-based fibres, as the main construction materials, proved to achieve a minus carbon outcome over the life cycle of the building. The GWP of the shelter house without and with sequestration are found to be 254.7 kg CO2 eq/m2 and -226.2 kg CO2 eq/m2, respectively.Originality/valueAs there are still very few studies concerned with the environmental impact of temporary refugee housing, this study contributes to the pool of knowledge by introducing a complete LCA calculation for a physical house prototype as a proof of concept on how using low impact raw materials for construction combined with passive solutions for heating and cooling can reach a minus carbon outcome. The GWP of the shelter house without and with sequestration are found to be 254.7 kg CO2 eq/m2 and -226.2 kg CO2 eq/m2.


Sign in / Sign up

Export Citation Format

Share Document