scholarly journals A non-toxic, reversibly released imaging probe for oral cancer that is derived from natural compounds

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magda Ghanim ◽  
Nicola Relitti ◽  
Gavin McManus ◽  
Stefania Butini ◽  
Andrea Cappelli ◽  
...  

AbstractCD44 is emerging as an important receptor biomarker for various cancers. Amongst these is oral cancer, where surgical resection remains an essential mode of treatment. Unfortunately, surgery is frequently associated with permanent disfigurement, malnutrition, and functional comorbidities due to the difficultly of tumour removal. Optical imaging agents that can guide tumour tissue identification represent an attractive approach to minimising the impact of surgery. Here, we report the synthesis of a water-soluble fluorescent probe, namely HA-FA-HEG-OE (compound 1), that comprises components originating from natural sources: oleic acid, ferulic acid and hyaluronic acid. Compound 1 was found to be non-toxic, displayed aggregation induced emission and accumulated intracellularly in vesicles in SCC-9 oral squamous cells. The uptake of 1 was fully reversible over time. Internalization of compound 1 occurs through receptor mediated endocytosis; uniquely mediated through the CD44 receptor. Uptake is related to tumorigenic potential, with non-tumorigenic, dysplastic DOK cells and poorly tumorigenic MCF-7 cells showing only low intracellular levels and highlighting the critical role of endocytosis in cancer progression and metastasis. Together, the recognised importance of CD44 as a cancer stem cell marker in oral cancer, and the reversible, non-toxic nature of 1, makes it a promising agent for real time intraoperative imaging.

2020 ◽  
Vol 117 (43) ◽  
pp. 26756-26765
Author(s):  
Botai Xuan ◽  
Deepraj Ghosh ◽  
Joy Jiang ◽  
Rachelle Shao ◽  
Michelle R. Dawson

Polyploidal giant cancer cells (PGCCs) are multinucleated chemoresistant cancer cells found in heterogeneous solid tumors. Due in part to their apparent dormancy, the effect of PGCCs on cancer progression has remained largely unstudied. Recent studies have highlighted the critical role of PGCCs as aggressive and chemoresistant cancer cells, as well as their ability to undergo amitotic budding to escape dormancy. Our recent study demonstrated the unique biophysical properties of PGCCs, as well as their unusual migratory persistence. Here we unveil the critical function of vimentin intermediate filaments (VIFs) in maintaining the structural integrity of PGCCs and enhancing their migratory persistence. We performed in-depth single-cell analysis to examine the distribution of VIFs and their role in migratory persistence. We found that PGCCs rely heavily on their uniquely distributed and polarized VIF network to enhance their transition from a jammed to an unjammed state to allow for directional migration. Both the inhibition of VIFs with acrylamide and small interfering RNA knockdown of vimentin significantly decreased PGCC migration and resulted in a loss of PGCC volume. Because PGCCs rely on their VIF network to direct migration and to maintain their enlarged morphology, targeting vimentin or vimentin cross-linking proteins could provide a therapeutic approach to mitigate the impact of these chemoresistant cells in cancer progression and to improve patient outcomes with chemotherapy.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 405-405
Author(s):  
Dawei Li ◽  
Ping Wei ◽  
Zhihai Peng ◽  
Chen Huang ◽  
Huamei Tang ◽  
...  

405 Background: The mammalian Forkhead Box (Fox) transcription factor FOXM1 is implicated in tumorigenesis including mouse intestinal cancer. However, the clinical significance of FOXM1 signaling in human colorectal cancer (CRC) pathogenesis remains unknown. Methods: We investigated FOXM1 expression in 203 cases of primary colon cancer and matched normal colon tissue specimens and explored the underlying mechanisms of altered FOXM1 expression and the impact of this altered expression on colon cancer growth and metastasis using in vitro and animal models of colon cancer. Results: We found weak expression of FOXM1 protein in the colon mucosa, whereas we observed strong FOXM1 expression in tumor-cell nuclei of colon cancer and lymph node metastases. A Cox proportional hazards model revealed that FOXM1 expression was an independent prognostic factor in multivariate analysis. Experimentally, overexpression of FOXM1 by gene transfer significantly promoted the growth and metastasis of colon cancer cells in orthotopic mouse models, whereas knockdown of FOXM1 expression by small interfering RNA did the opposite. Promotion of colon tumorigenesis by FOXM1 directly and significantly correlated with activation of urokinase plasminogen activator receptor (PLAUR) expression and elevation of invasion and metastasis. Conclusions: Given the importance of FOXM1 in regulation of the expression of genes key to cancer biology, dysregulated expression and activation of FOXM1 may play important roles in colon cancer progression and metastasis.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Chun-Jung Lin ◽  
Eun-Jin Yun ◽  
U-Ging Lo ◽  
Yu-Ling Tai ◽  
Su Deng ◽  
...  

Abstract A subpopulation of cancer stem cells (CSCs) plays a critical role of cancer progression, recurrence, and therapeutic resistance. Many studies have indicated that castration-resistant prostate cancer (CRPC) is associated with stem cell phenotypes, which could further promote neuroendocrine transdifferentiation. Although only a small subset of genetically pre-programmed cells in each organ has stem cell capability, CSCs appear to be inducible among a heterogeneous cancer cell population. However, the inductive mechanism(s) leading to the emergence of these CSCs are not fully understood in CRPC. Tumor cells actively produce, release, and utilize exosomes to promote cancer development and metastasis, cancer immune evasion as well as chemotherapeutic resistance; the impact of tumor-derived exosomes (TDE) and its cargo on prostate cancer (PCa) development is still unclear. In this study, we demonstrate that the presence of Cav-1 in TDE acts as a potent driver to induce CSC phenotypes and epithelial–mesenchymal transition in PCa undergoing neuroendocrine differentiation through NFκB signaling pathway. Furthermore, Cav-1 in mCRPC-derived exosomes is capable of inducing radio- and chemo-resistance in recipient cells. Collectively, these data support Cav-1 as a critical driver for mCRPC progression.


2021 ◽  
Author(s):  
Youyuan Deng ◽  
Priyanka Chakraborty ◽  
Mohit Kumar Jolly ◽  
Herbert Levine

AbstractThe epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression, being responsible in many cases for the onset of the metastatic cascade and being integral in the ability of cells to resist drug treatment. Most studies of EMT focus on its induction via chemical signals such as TGF-β or Notch ligands, but it has become increasingly clear that biomechanical features of the microenvironment such as ECM (extracellular matrix) stiffness can be equally important. Here, we introduce a coupled feedback loop connecting stiffness to the EMT transcription factor ZEB1, which acts via increasing the secretion of LOXL2 that leads to increased cross-linking of collagen fibers in the ECM. This increased cross-linking can effectively increase ECM stiffness and increase ZEB1 levels, thus setting a positive feedback loop between ZEB1 and ECM stiffness. To investigate the impact of this non-cell-autonomous effect, we introduce a computational approach capable of connecting LOXL2 concentration to increased stiffness and thereby to higher ZEB1 levels. Our results indicate that this positive feedback loop, once activated, can effectively lock the cells in a mesenchymal state.


2021 ◽  
Vol 21 (3) ◽  
pp. 1775-1796
Author(s):  
Qing Yu ◽  
Jing Chen ◽  
Weihua Qin ◽  
Siming Cheng ◽  
Yuepeng Zhang ◽  
...  

Abstract. Water-soluble organic carbon (WSOC) accounts for a large proportion of aerosols and plays a critical role in various atmospheric chemical processes. In order to investigate the primary sources and secondary production of WSOC in downtown Beijing, day and night fine particulate matter (PM2.5) samples in January (winter), April (spring), July (summer) and October (autumn) 2017 were collected and analyzed for WSOC and organic tracers in this study. WSOC was dominated by its moderately hydrophilic fraction and showed the highest concentration in January and comparable levels in April, July and October 2017. Some typical organic tracers were chosen to evaluate the emission strength and secondary formation of WSOC. Seasonal variation of the organic tracers suggested significantly enhanced formation of anthropogenic secondary organic aerosols (SOAs) during the sampling period in winter and obviously elevated biogenic SOA formation during the sampling period in summer. These organic tracers were applied into a positive matrix factorization (PMF) model to calculate the source contributions of WSOC as well as its moderately and strongly hydrophilic portions. The secondary sources contributed more than 50 % to WSOC, with higher contributions during the sampling periods in summer (75.1 %) and winter (67.4 %), and the largest contributor was aromatic SOC. In addition, source apportionment results under different pollution levels suggested that controlling biomass burning and aromatic precursors would be effective to reduce WSOC during the haze episodes in cold seasons. The impact factors for the formation of different SOA tracers and total secondary organic carbon (SOC) as well as moderately and strongly hydrophilic SOC were also investigated. The acid-catalyzed heterogeneous or aqueous-phase oxidation appeared to dominate in the SOC formation during the sampling period in winter, while the photochemical oxidation played a more critical role during the sampling period in summer. Moreover, photooxidation played a more critical role in the formation of moderately hydrophilic SOC, while the heterogeneous or aqueous-phase reactions had more vital effects on the formation of strongly hydrophilic SOC.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Peng Tan ◽  
Yunke Xu ◽  
Yichao Du ◽  
Lile Wu ◽  
Bing Guo ◽  
...  

Abstract Speckle-type POZ domain protein (SPOP), an adaptor in the E3 ubiquitin ligase complex, recognizes substrates and promotes protein degradation via the ubiquitin-proteasome system. It appears to help regulate progression of several cancers, and we show here that it acts as a tumor suppressor in pancreatic cancer. Our analysis of patient tissues showed decreased SPOP expression, which was associated with poor prognosis. SPOP knockdown in SW1990 (in vitro/vivo) and PANC-1 (in vitro) cells led to significantly greater proliferation, migration, and invasion. Co-immunoprecipitation experiments in SW1990 cells showed that SPOP interacted with the stem-cell marker NANOG, and this interaction has recently been shown to play a critical role in regulating progression of prostate cancer. We showed that, in one patient with pancreatic cancer, the expression of a truncated form of SPOP (p.Q360*) lacking the nuclear localization signal led to nuclear accumulation of NANOG, which promoted growth and metastasis of pancreatic cancer cells. Our results suggest that SPOP suppresses progression of pancreatic cancer by promoting the ubiquitination and subsequent degradation of NANOG. These results identify the SPOP-NANOG interaction as a potential therapeutic target against pancreatic cancer.


2016 ◽  
Vol 34 (6) ◽  
pp. 702-707 ◽  
Author(s):  
Tomoyuki Nagai ◽  
Tokuzo Arao ◽  
Kazuto Nishio ◽  
Kazuko Matsumoto ◽  
Satoru Hagiwara ◽  
...  

Background: Epithelial-mesenchymal transition (EMT) is considered to play a critical role in cancer progression and metastasis. However, the impact of EMT on the prognosis of hepatocellular carcinoma (HCC) is still elusive. In this study, we examined the relationship between the expression of EMT markers and recurrence-free survival (RFS) and overall survival (OS) in HCC patients after hepatic resection. Summary: The mRNA expression of 15 genes related to EMT was assessed by quantitative real-time polymerase chain reaction in cancerous tissues from 72 patients who underwent hepatic resection of HCC between January 2005 and December 2010 at our hospital. The upregulation of TWIST and the downregulation of tight junction protein ZO-1 (TJP1) were significantly associated with shorter RFS as well as OS. Increased levels of TWIST and decreased levels of TJP1 should be predictive markers for poor prognosis in patients with HCC after hepatectomy; those could serve as potential biomarkers for the treatment of HCC. Key Messages: A low level of TJP1 and high level of TWIST expression were prognostic factors predicting HCC after hepatic resection.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1609
Author(s):  
Youyuan Deng ◽  
Priyanka Chakraborty ◽  
Mohit Kumar Jolly ◽  
Herbert Levine

The epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression, being responsible in many cases for the onset of the metastatic cascade and being integral in the ability of cells to resist drug treatment. Most studies of EMT focus on its induction via chemical signals such as TGF-β or Notch ligands, but it has become increasingly clear that biomechanical features of the microenvironment such as extracellular matrix (ECM) stiffness can be equally important. Here, we introduce a coupled feedback loop connecting stiffness to the EMT transcription factor ZEB1, which acts via increasing the secretion of LOXL2 that leads to increased cross-linking of collagen fibers in the ECM. This increased cross-linking can effectively increase ECM stiffness and increase ZEB1 levels, thus setting a positive feedback loop between ZEB1 and ECM stiffness. To investigate the impact of this non-cell-autonomous effect, we introduce a computational approach capable of connecting LOXL2 concentration to increased stiffness and thereby to higher ZEB1 levels. Our results indicate that this positive feedback loop, once activated, can effectively lock the cells in a mesenchymal state. The spatial-temporal heterogeneity of the LOXL2 concentration and thus the mechanical stiffness also has direct implications for migrating cells that attempt to escape the primary tumor.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


Sign in / Sign up

Export Citation Format

Share Document