scholarly journals The energy allocation trade-offs underlying life history traits in hypometabolic strepsirhines and other primates

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Simmen ◽  
Luca Morino ◽  
Stéphane Blanc ◽  
Cécile Garcia

AbstractLife history, brain size and energy expenditure scale with body mass in mammals but there is little conclusive evidence for a correlated evolution between life history and energy expenditure (either basal/resting or daily) independent of body mass. We addressed this question by examining the relationship between primate free-living daily energy expenditure (DEE) measured by doubly labeled water method (n = 18 species), life history variables (maximum lifespan, gestation and lactation duration, interbirth interval, litter mass, age at first reproduction), resting metabolic rate (RMR) and brain size. We also analyzed whether the hypometabolic primates of Madagascar (lemurs) make distinct energy allocation tradeoffs compared to other primates (monkeys and apes) with different life history traits and ecological constraints. None of the life-history traits correlated with DEE after controlling for body mass and phylogeny. In contrast, a regression model showed that DEE increased with increasing RMR and decreasing reproductive output (i.e., litter mass/interbirth interval) independent of body mass. Despite their low RMR and smaller brains, lemurs had an average DEE remarkably similar to that of haplorhines. The data suggest that lemurs have evolved energy strategies that maximize energy investment to survive in the unusually harsh and unpredictable environments of Madagascar at the expense of reproduction.

2020 ◽  
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

AbstractAll life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth, and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast-slow life history continuum. However, empirical evidence of a relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life history traits – maximum body mass, generation length, and growth performance – explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.


2021 ◽  
Vol 288 (1953) ◽  
pp. 20210910
Author(s):  
Serena Wong ◽  
Jennifer S. Bigman ◽  
Nicholas K. Dulvy

All life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast–slow life-history continuum. However, empirical evidence of a direct interspecific relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life-history traits—maximum body mass, generation length and growth performance—explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life-history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.


2019 ◽  
Author(s):  
Cecina Babich Morrow ◽  
S. K. Morgan Ernest ◽  
Andrew J. Kerkhoff

AbstractLife history traits represent organism’s strategies to navigate the fitness trade-offs between survival and reproduction. Eric Charnov developed three dimensionless metrics to quantify fundamental life history trade-offs. Lifetime reproductive effort (LRE), relative reproductive lifespan (RRL), and relative offspring size (ROS), together with body mass, can be used classify life history strategies across the four major classes of tetrapods: amphibians, reptiles, mammals, and birds. First, we investigate how the metrics have evolved in concert with body mass. In most cases, we find evidence for correlated evolution between body mass and the three metrics. Finally, we compare life history strategies across the four classes of tetrapods and find that LRE, RRL, and ROS delineate a space in which the major tetrapod clades occupy mostly unique subspaces. These distinct combinations of life history strategies provide us with a framework to understand the impact of major evolutionary transitions in energetics, physiology, and ecology.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Cecina Babich Morrow ◽  
S. K. Morgan Ernest ◽  
Andrew J. Kerkhoff

Life-history traits represent organisms' strategies to navigate the fitness trade-offs between survival and reproduction. Eric Charnov developed three dimensionless metrics to quantify fundamental life-history trade-offs. Lifetime reproductive effort (LRE), relative reproductive lifespan (RRL) and relative offspring size (ROS), together with body mass can be used to classify life-history strategies across the four major classes of tetrapods: amphibians, reptiles, mammals and birds. First, we investigate how the metrics have evolved in concert with body mass within tetrapod lineages. In most cases, we find evidence for correlated evolution among body mass and the three dimensionless metrics. Second, we compare life-history strategies across the four classes of tetrapods and find that LRE, RRL and ROS delineate a space in which the major tetrapod classes occupy mostly unique subspaces. These distinct combinations of life-history strategies provide us with a framework to understand the impact of major evolutionary transitions in energetics, physiology and ecology.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


2006 ◽  
Vol 27 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Delfi Sanuy ◽  
Christoph Leskovar ◽  
Neus Oromi ◽  
Ulrich Sinsch

AbstractDemographic life history traits were investigated in three Bufo calamita populations in Germany (Rhineland-Palatinate: Urmitz, 50°N; 1998-2000) and Spain (Catalonia: Balaguer, Mas de Melons, 41°N; 2004). We used skeletochronology to estimate the age as number of lines of arrested growth in breeding adults collected during the spring breeding period (all localities) and during the summer breeding period (only Urmitz). A data set including the variables sex, age and size of 185 males and of 87 females was analyzed with respect to seven life history traits (age and size at maturity of the youngest first breeders, age variation in first breeders, longevity, potential reproductive lifespan, median lifespan, age-size relationship). Spring and summer cohorts at the German locality differed with respect to longevity and potential reproductive lifespan by one year in favour of the early breeders. The potential consequences on fitness and stability of cohorts are discussed. Latitudinal variation of life history traits was mainly limited to female natterjacks in which along a south-north gradient longevity and potential reproductive lifespan increased while size decreased. These results and a review of published information on natterjack demography suggest that lifetime number of offspring seem to be optimized by locally different trade-offs: large female size at the cost of longevity in southern populations and increased longevity at the cost of size in northern ones.


Sign in / Sign up

Export Citation Format

Share Document