scholarly journals Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anum Shafiq ◽  
Andaç Batur Çolak ◽  
Tabassum Naz Sindhu ◽  
Qasem M. Al-Mdallal ◽  
T. Abdeljawad

AbstractIn current investigation, a novel implementation of intelligent numerical computing solver based on multi-layer perceptron (MLP) feed-forward back-propagation artificial neural networks (ANN) with the Levenberg–Marquard algorithm is provided to interpret heat generation/absorption and radiation phenomenon in unsteady electrically conducting Williamson liquid flow along porous stretching surface. Heat phenomenon is investigated by taking convective boundary condition along with both velocity and thermal slip phenomena. The original nonlinear coupled PDEs representing the fluidic model are transformed to an analogous nonlinear ODEs system via incorporating appropriate transformations. A data set for proposed MLP-ANN is generated for various scenarios of fluidic model by variation of involved pertinent parameters via Galerkin weighted residual method (GWRM). In order to predict the (MLP) values, a multi-layer perceptron (MLP) artificial neural network (ANN) has been developed. There are 10 neurons in hidden layer of feed forward (FF) back propagation (BP) network model. The predictive performance of ANN model has been analyzed by comparing the results obtained from the ANN model using Levenberg-Marquard algorithm as the training algorithm with the target values. When the obtained Mean Square Error (MSE), Coefficient of Determination (R) and error rate values have been analyzed, it has been concluded that the ANN model can predict SFC and NN values with high accuracy. According to the findings of current analysis, ANN approach is accurate, effective and conveniently applicable for simulating the slip flow of Williamson fluid towards the stretching plate with heat generation/absorption. The obtained results showed that ANNs are an ideal tool that can be used to predict Skin Friction Coefficients and Nusselt Number values.

10.17158/320 ◽  
2014 ◽  
Vol 18 (2) ◽  
Author(s):  
Eric John G. Emberda ◽  
Den Ryan L. Dumas ◽  
Timothy Pierce M. Rentillo

<p>This study compared the use of Linear Regression and Feed Forward Backpropagation Artificial Neural Network (ANN) in forecasting the coconut yield and copra yield of a selected area in Davao region. Raw data were gathered from the Philippine Coconut Authority, Davao Research Center. An ANN model was created and tested repeatedly to the best combination of nodes. Accuracy of the forecast between the two methods was compared by looking at the mean square error and the standard error for variable x and y. Results showed that the use of Feed Forward Back Propagation Artificial Neural Network gives better accuracy of the forecast data.</p>


This study examines the potential of artificial neural network (ANN) to predict Total Volatile Organic Compounds (TVOCs) released via decomposition of local food wastes. To mimic the decomposition process, a bioreactor was designed to stimulate the food waste storage condition. The food waste was modeled based on the waste composition from a residential area. A feed forward multilayer back propagation (Levenberg – Marquardt training algorithm) was then developed to predict the TVOCs. The findings indicate that a two-layer artificial neuron network (ANN) with six input variables and these include (outside and inside temperature, pH, moisture content, oxygen level, relative humidity) with a total of eighty eight (88) data are used for the modeling purpose. The network with the highest regression coefficient (R) is 0.9967 and the lowest Mean Square Error (MSE) is 0.00012 (nearest to the value of zero) has been selected as the Optimum ANN model. The findings of this study suggest the most suitable ANN model that befits the research objective is ANN model with one (1) hidden layer with fifteen (15) hidden neurons. Additionally, it is critical to note that the results from the experiment and predicted model are in good agreement.


Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 195
Author(s):  
Shiping Zhao ◽  
Yong Ma ◽  
Dingxin Leng

Recently, magnetorheological elastomer (MRE) has been paid increasingly attention for vibration mitigation devices with the benefits of low power cost, fail safe performances, and fast responses. To make full use of the striking advantages of MRE device, a highly precise model should be developed to predict its dynamic performances. In the work, an MRE isolator in shear–squeeze mixed mode is developed and tested under dynamic loadings. The nonlinear performances in various displacement amplitude and currents are shown. An artificial neural network model with a back-propagation algorithm is proposed to characterize the nonlinear hysteresis of MRE isolator for its implementation in vibration control applications. This model utilized the displacement, velocity, and applied current as inputs and output force as output. The results show that the proposed model has high modeling accuracy and can well portray the complicated behaviors of MRE isolator with different excitations, which shows a fundamental basis for structural vibration control.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


Author(s):  
Mustafa Ayyıldız ◽  
Kerim Çetinkaya

In this study, an artificial neural network model was developed to predict the geometric shapes of different objects using image processing. These objects with various sizes and shapes (circle, square, triangle, and rectangle) were used for the experimental process. In order to extract the features of these geometric shapes, morphological features, including the area, perimeter, compactness, elongation, rectangularity, and roundness, were applied. For the artificial neural network modeling, the standard back-propagation algorithm was found to be the optimum choice for training the model. In the building of the network structure, five different learning algorithms were used: the Levenberg–Marquardt, the quasi-Newton back propagation, the scaled conjugate gradient, the resilient back propagation, and the conjugate gradient back propagation. The best result was obtained by 6-5-1 network architectures with single hidden layers for the geometric shapes. After artificial neural network training, the correlation coefficients ( R2) of the geometric shape values for training and testing data were very close to 1. Similarly, the root-mean-square error and mean error percentage values for the training and testing data were less than 0.9% and 0.004%, respectively. These results demonstrated that the artificial neural network is an admissible model for the estimation of geometric shapes using image processing.


2014 ◽  
Vol 668-669 ◽  
pp. 994-998
Author(s):  
Jin Ting Ding ◽  
Jie He

This study aims at providing a back propagation-artificial neural network (BP-ANN) model on forecasting the water quality change trend of Qiantang River basin. To achieve this goal, a three-layer (one input layer, one hidden layer, and one output layer) BP-ANN with the LM regularization training algorithm was used. Water quality variables such as pH value, dissolved oxygen, permanganate index and ammonia-nitrogen was selected as the input data to obtain the output of the neural network. The ANN structure with 17 hidden neurons obtained the best selection. The comparison between the original measured and forecast values of the ANN model shows that the relative errors, with a few exceptions, were lower than 9%. The results indicated that the BP neural network can be satisfactorily applied to forecast precise water quality parameters and is suitable for pre-alarm of water quality trend.


2012 ◽  
Vol 576 ◽  
pp. 91-94 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Machining of hardened steel at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality and cutting tool life. Thus, predicting the temperature in early stage becomes utmost importance. This research presents a neural network model for predicting the cutting temperature in the CNC end milling process. The Artificial Neural Network (ANN) was applied as an effective tool for modeling and predicting the cutting temperature. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the cutting temperature. The artificial neural network (ANN) was applied to predict the cutting temperature. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show a high correlation between the predicted and the observed temperature which indicates the validity of the models.


Sign in / Sign up

Export Citation Format

Share Document