scholarly journals Boron rich nanotube drug carrier system is suited for boron neutron capture therapy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabian Heide ◽  
Matthew McDougall ◽  
Candice Harder-Viddal ◽  
Roy Roshko ◽  
David Davidson ◽  
...  

AbstractBoron neutron capture therapy (BNCT) is a two-step therapeutic process that utilizes Boron-10 in combination with low energy neutrons to effectively eliminate targeted cells. This therapy is primarily used for difficult to treat head and neck carcinomas; recent advances have expanded this method to cover a broader range of carcinomas. However, it still remains an unconventional therapy where one of the barriers for widespread adoption is the adequate delivery of Boron-10 to target cells. In an effort to address this issue, we examined a unique nanoparticle drug delivery system based on a highly stable and modular proteinaceous nanotube. Initially, we confirmed and structurally analyzed ortho-carborane binding into the cavities of the nanotube. The high ratio of Boron to proteinaceous mass and excellent thermal stability suggest the nanotube system as a suitable candidate for drug delivery into cancer cells. The full physicochemical characterization of the nanotube then allowed for further mechanistic molecular dynamic studies of the ortho-carborane uptake and calculations of corresponding energy profiles. Visualization of the binding event highlighted the protein dynamics and the importance of the interhelical channel formation to allow movement of the boron cluster into the nanotube. Additionally, cell assays showed that the nanotube can penetrate outer membranes of cancer cells followed by localization around the cells’ nuclei. This work uses an integrative approach combining experimental data from structural, molecular dynamics simulations and biological experiments to thoroughly present an alternative drug delivery device for BNCT which offers additional benefits over current delivery methods.

Author(s):  
Yan Surono ◽  
C Cari ◽  
Yohannes Sarjono

<p><strong>Abstract</strong> Cancer is a deadly disease that exist on planet earth. Efforts were made to be able to kill cancer cells either by manual operation or by radiotherapy. One way to use energy radiation radioactive elements as killers of cancer cells is Boron Neutron Capture Therapy (BNCT). BNCT is a therapeutic technique that utilizes the interaction of neutron capture by the core 10B will produce α-particles and nuclei 7Li results by reaction 10B (n, α) 7Li. It therefore requires a material that will produce neutrons used in BNCT. Materials  target that will be searched in order to obtain optimal materials according to the requirements provided by the International Atomic Agency (IAEA).<em></em></p><p><em> </em></p><p><strong>Keywords </strong>: Kanker, Material, Neutron, BNCT</p><p align="center"><strong><em> </em></strong></p><p><strong>Abstrak</strong> Kanker adalah salah satu penyakit yang mematikan yang ada di planet bumi. Upaya upaya dilakukan untuk dapat membunuh sel kanker baik itu  secara operasi manual maupun dengan cara radioterapi. Salah satu cara yang memanfaatkan energi radiasi unsur unsur radioaktif sebagai pembunuh sel kanker adalah Boron Neutron Capture Therapy (BNCT). BNCT merupakan teknik terapi yang memanfaatkan interaksi tangkapan neutron oleh inti 10B yang akan menghasilkan partikel-α dan inti hasil 7Li melalui reaksi 10B(n,α) 7Li. Oleh sebab itu diperlukan material yang akan menghasilkan neutron digunakan dalam BNCT. Bahan - bahan sasaran yang akan ditelusur dalam upaya mendapatkan bahan yang optimal sesuai persyaratan yang diberikan oleh International Atomic Agency (IAEA).</p><p><em> </em></p><p><strong>Kata Kunci </strong>: Kanker, Material, Neutron, BNCT</p>


Oncotarget ◽  
2017 ◽  
Vol 8 (22) ◽  
pp. 36614-36627 ◽  
Author(s):  
Weirong Kang ◽  
Darren Svirskis ◽  
Vijayalekshmi Sarojini ◽  
Ailsa L. McGregor ◽  
Joseph Bevitt ◽  
...  

2019 ◽  
Vol 37 (6) ◽  
pp. 1292-1299
Author(s):  
Adam Hermawan ◽  
Ratna Asmah Susidarti ◽  
Ratna Dwi Ramadani ◽  
Lailatul Qodria ◽  
Rohmad Yudi Utomo ◽  
...  

2018 ◽  
Vol 35 (3) ◽  
pp. 203-207
Author(s):  
Ren-Tai Chiang

 The direct and indirect ionizing radiation sources for boron neutron capture therapy (BNCT)are identi?ed. The mechanisms of physical, chemical and biological radiation interactions for BNCT are systematically described and analyzed. The relationship between the effect of biological radiation and radiation dose are illustrated and analyzed for BNCT. If the DNAs in chromosomes are damaged by ion- izing radiations, the instructions that control the cell function and reproduction are also damaged. This radiation damage may be reparable, irreparable, or incorrectly repaired. The irreparable damage can result in cell death at next mitosis while incorrectly repaired damage can result in mutation. Cell death leads to variable degrees of tissue dysfunction, which can affect the whole organism’s functions. Can- cer cells cannot live without oxygen and nutrients via the blood supply. A cancer tumor can be shrunk by damaging angiogenic factors and/or capillaries via ionizing radiations to decrease blood supply into the cancer tumor. The collisions between ionizing radiations and the target nuclei and the absorption of the ultraviolet, visible light, infrared and microwaves from bremsstrahlung in the tumor can heat up and damage cancer cells and function as thermotherapy. The cancer cells are more chemically and biologically sensitive at the BNCT-induced higher temperatures since free-radical-induced chemical re- actions are more random and vigorous at higher temperatures after irradiation, and consequently the cancer cells are harder to divide or even survive due to more cell DNA damage. BNCT is demonstrated via a recent clinical trial that it is quite effective in treating recurrent nasopharyngeal cancer.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi73-vi73
Author(s):  
Hiroyuki Michiue ◽  
Asami Fukunaga ◽  
Atsushi Fujimura ◽  
Kazuyo Igawa ◽  
Hideki Matsui ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7326
Author(s):  
Mariya A. Vorobyeva ◽  
Maya A. Dymova ◽  
Darya S. Novopashina ◽  
Elena V. Kuligina ◽  
Valentina V. Timoshenko ◽  
...  

Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of 10B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying 10B to the tumor cells. This study represents the first example of using 2′-F-RNA aptamer GL44 specific to the human glioblastoma U-87 MG cells as a boron delivery agent for BNCT. The closo-dodecaborate residue was attached to the 5′-end of the aptamer, which was also labeled by the fluorophore at the 3′-end. The resulting bifunctional conjugate showed effective and specific internalization into U-87 MG cells and low toxicity. After incubation with the conjugate, the cells were irradiated by epithermal neutrons on the Budker Institute of Nuclear Physics neutron source. Evaluation of the cell proliferation by real-time cell monitoring and the clonogenic test revealed that boron-loaded aptamer decreased specifically the viability of U-87 MG cells to the extent comparable to that of 10B-boronophenylalanine taken as a control. Therefore, we have demonstrated a proof of principle of employing aptamers for targeted delivery of boron-10 isotope in BNCT. Considering their specificity, ease of synthesis, and large toolkit of chemical approaches for high boron-loading, aptamers provide a promising basis for engineering novel BNCT agents.


Sign in / Sign up

Export Citation Format

Share Document