scholarly journals Modulation of salt-induced stress impact in Gladiolus grandiflorus L. by exogenous application of salicylic acid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malik Fiaz Hussain Ferdosi ◽  
Amna Shoaib ◽  
Salma Habib ◽  
Kashif Ali Khan

AbstractSalinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world’s cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m–1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50–200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.

2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Zeeshan Rehman ◽  
Abrar Hussain ◽  
Shanzay Saleem ◽  
Sheza Ayaz Khilji ◽  
Zahoor Ahmad Sajid

2019 ◽  
Vol 21 (1) ◽  
pp. 50 ◽  
Author(s):  
Lorena del Rosario Cappellari ◽  
Maricel Valeria Santoro ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Erika Banchio

The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.


Author(s):  
N. Candan Yücel

Starch and fructans are accumulated for carbohydrate storage in legumes, while fructans accumulated large amounts than starch. The uses of this natural and biodegradable material counteract stress as cheaper and safer alternatives. Therefore, fructan (F, 0.5 %) and salicylic acid (SA, 0.5 mM) priming were used as exogenous growth enhancers to stimulate chickpea (Cicer arietinum L.) seed vigor against salt stress. The main aim of this study was to address whether priming chickpea with F, SA and F+SA could bring about supplementary benefits particularly against salt stress. Exogenous application of F- or SA-alone improved chickpea development in the presence of salt stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic – flavonoids, chlorophyll – carotenoids contents, phenylalanine ammonia-lyase (PAL), ascorbic acid oxidase (AAO) activities and lipid peroxidation level (LPO) were determined in the combined F+SA treatment against salt stress


2021 ◽  
Vol 12 (3) ◽  
pp. 559-564
Author(s):  
Shweta Sharma ◽  
Ashika Chourasia ◽  
Varnika Kaushik ◽  
Gargi Nandi ◽  
Joshna Bhatia ◽  
...  

Medicinal plants are a known source of antioxidants and are used for the prevention and treatment of diseases. Exogenous application of elicitors can be used to improve the antioxidant profiles of medicinal plants enhancing their therapeutic potential. Present study aimed to study the effect of elicitors such as proline, salicylic acid and a plant growth promoting rhizobacteria- Azospirillum on antioxidant potential of medicinal plant - Ocimum sanctum. Semi-quantitative assay- thin layer chromatography (TLC), and quantitative assays such as DPPH (2,2-Diphenyl-1-picrylhydrazyl) for free radical scavenging activity, total phenolic content and antioxidant responsive enzymes SOD (superoxide dismutase) and CAT (catalase) activities were used for the assessment based on standard protocols. Growth changes like number of leaves, root length, shoot length, total plant height, fresh weight and dry weight observed in response to the treatments given. Exogenous application of proline, salicylic acid and Azospirillum enhanced growth and overall antioxidant content of treated plants. Proline showed higher elicitation with high phenolic content (47.66 GAE/gm. wt.) and number of distinct bands (18) in TLC. The DPPH assay also showed higher free radical scavenging potential (70.32% reduction) of proline treated plants. Enhanced activity of antioxidative enzymes CAT and SOD was also observed in all the treated plants. The study confirms the effectivity of using these elicitors for enhancing antioxidant potential of medicinal plants.


Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 1444-1450
Author(s):  
R.F. Chavan ◽  
B.K. Sakhale

An investigative research experiment was undertaken to study the effect of exogenous application of salicylic acid on tomato fruit of Cv. Abhinav during its storage period at 24oC. The fresh tomato fruits (Lycopersicon esculentum Mill.) of Cv. Abhinav were harvested at the proper stage of physiological maturity. The fruits were washed thoroughly with clean water followed by fungicidal treatment of 500 ppm benomyl before salicylic acid treatment. Thereafter, the fungicide treated tomato fruits were subdivided into four different lots and then immersed in salicylic acid (SA) solutions at 50, 100, 150 and 200 ppm concentrations for 30 mins respectively and kept for storage studies along with control fruits. During the storage period, the observations were recorded at frequent intervals for various physico-chemical parameters in which tomatoes treated at 200ppm salicylic acid concentration found significant with respect to the lower physiological loss in weight (10.3%), a gradual increase in TSS and colour (h) from 1.4 to 3.3oBrix and -3.63 to 2.59 respectively. Moreover, the considerable decrease was observed in titrable acidity from 1.34 to 0.14%, Ascorbic Acid (SA) content from 73.14 to 22.10 mg/100 g and texture in terms of firmness decreased from 354 to 96 gf. The total phenolic content of 200 ppm salicylic acid treated tomatoes showed a gradual decrease from 3.79 to 3.14 mg GAE/g and lycopene content increased slowly from 7.01 to 12.31 mg/100 g therefore, found significant as compared to rest of the treatments and control fruits.


2021 ◽  
pp. 108201322110320
Author(s):  
Mariya Batool ◽  
Omar Bashir ◽  
Tawheed Amin ◽  
Sajad Mohd Wani ◽  
FA Masoodi ◽  
...  

This study aimed at investigating the influence of different postharvest treatments with oxalic acid (OA) and salicylic acid (SA) on quality attributes and postharvest shelf life of temperate grown apricot varieties stored under controlled atmosphere (CA) storage conditions. After each treatment was given, the samples were stored in CA store maintained at a temperature of 0 °C, 90 ± 5% relative humidity, 5% oxygen and 15% carbon dioxide for 30 days. Results indicated that both OA and SA treatments significantly (p ≤ 0.05) retained total soluble solids, titratable acidity, color profile, ascorbic acid content and total phenolic content of apricot varieties and had a positive effect on antioxidant activity and texture of samples compared to control. However, carotenoid content was found to be higher in control. Both the treatments reduced chilling injury index, weight loss and decay percentage of samples. Moreover, it was found that SA treatment was the most effective treatment in maintaining visual color of apricots while OA maintained fruit firmness and effectively decreased the decay percentage and chilling injury index of apricot varieties. In conclusion, it was found that both OA and SA have the potential to extend storage life of apricots and maintain quality attributes of the crop during CA storage.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


Sign in / Sign up

Export Citation Format

Share Document