scholarly journals Use of human PBMC to analyse the impact of obesity on lipid metabolism and metabolic status: a proof-of-concept pilot study

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Costa ◽  
Bàrbara Reynés ◽  
Jadwiga Konieczna ◽  
Marian Martín ◽  
Miquel Fiol ◽  
...  

AbstractPeripheral blood mononuclear cells (PBMC) are widely used as a biomarker source in nutrition/obesity studies because they reflect gene expression profiles of internal tissues. In this pilot proof-of-concept study we analysed in humans if, as we previously suggested in rodents, PBMC could be a surrogate tissue to study overweight/obesity impact on lipid metabolism. Pre-selected key lipid metabolism genes based in our previous preclinical studies were analysed in PBMC of normoglycemic normal-weight (NW), and overweight-obese (OW-OB) subjects before and after a 6-month weight-loss plan. PBMC mRNA levels of CPT1A, FASN and SREBP-1c increased in the OW-OB group, according with what described in liver and adipose tissue of humans with obesity. This altered expression pattern was related to increased adiposity and early signs of metabolic impairment. Greater weight loss and/or metabolic improvement as result of the intervention was related to lower CPT1A, FASN and SREBP-1c gene expression in an adjusted linear mixed-effects regression analysis, although no gene expression recovery was observed when considering mean comparisons. Thus, human PBMC reflect lipid metabolism expression profile of energy homeostatic tissues, and early obesity-related alterations in metabolic at-risk subjects. Further studies are needed to understand PBMC usefulness for analysis of metabolic recovery in weigh management programs.

2020 ◽  
Vol 9 (6) ◽  
pp. 1974 ◽  
Author(s):  
Daniel P. Zalewski ◽  
Karol P. Ruszel ◽  
Andrzej Stępniewski ◽  
Dariusz Gałkowski ◽  
Jacek Bogucki ◽  
...  

Abdominal artery aneurysm (AAA) refers to abdominal aortic dilatation of 3 cm or greater. AAA is frequently underdiagnosed due to often asymptomatic character of the disease, leading to elevated mortality due to aneurysm rupture. MiRNA constitute a pool of small RNAs controlling gene expression and is involved in many pathologic conditions in human. Targeted panel detecting altered expression of miRNA and genes involved in AAA would improve early diagnosis of this disease. In the presented study, we selected and analyzed miRNA and gene expression signatures in AAA patients. Next, generation sequencing was applied to obtain miRNA and gene-wide expression profiles from peripheral blood mononuclear cells in individuals with AAA and healthy controls. Differential expression analysis was performed using DESeq2 and uninformative variable elimination by partial least squares (UVE-PLS) methods. A total of 31 miRNAs and 51 genes were selected as the most promising biomarkers of AAA. Receiver operating characteristics (ROC) analysis showed good diagnostic ability of proposed biomarkers. Genes regulated by selected miRNAs were determined in silico and associated with functional terms closely related to cardiovascular and neurological diseases. Proposed biomarkers may be used for new diagnostic and therapeutic approaches in management of AAA. The findings will also contribute to the pool of knowledge about miRNA-dependent regulatory mechanisms involved in pathology of that disease.


1998 ◽  
Vol 275 (4) ◽  
pp. R1138-R1145 ◽  
Author(s):  
Shinya Makino ◽  
Mitsuru Nishiyama ◽  
Koichi Asaba ◽  
Philip W. Gold ◽  
Kozo Hashimoto

In the rat, high-dose corticosterone (Cort) administration, the hypercortisolism of starvation, and adrenalectomy are all associated with decreased food intake and weight loss. We report here a study of the effects of high-dose Cort administration, starvation, and adrenalectomy on two peripheral hormones known to influence food intake and energy use, insulin and leptin. We also studied the impact of these interventions on the levels of type 2 corticotropin-releasing hormone receptor (CRHR-2) mRNA in the hypothalamic paraventricular nucleus (PVN) and ventromedial hypothalamus (VMH). The VMH is classically referred to as the satiety center because electrical stimulation of the VMH leads to inhibition of food intake, whereas CRHR-2 are thought to transduce the profound anorexogenic effects of CRH or its related peptide urocortin. Starvation and adrenalectomy each lowered plasma insulin and leptin levels and were associated with decrements in CRHR-2 mRNA levels in the VMH. Cort administration increased plasma leptin levels profoundly, as well as plasma insulin levels and the levels of VMH CRHR-2 mRNA. Under all experimental conditions, a positive correlation was seen between plasma leptin levels and VMH CRHR-2 mRNA. These data suggest that decreased food intake and weight loss after high-dose Cort administration at least partially depend on the profound impact of Cort on plasma leptin secretion in the rat; they suggest, moreover, an additional mechanism for the satiety-inducing effects of leptin, namely increasing CRHR-2 in the VMH. The concordance of a fall in plasma insulin and leptin levels with the fall in VMH CRHR-2 mRNA levels further supports the idea that compensatory responses during starvation and adrenalectomy include not only the disinhibiting effects of reduced insulin and leptin levels on appetite through already-described mechanisms but also via an effect of leptin on VMH CRHR-2. Neither Cort administration, starvation, nor adrenalectomy influenced the levels of CRHR-2 mRNA in the PVN, suggesting that these receptors are differentially regulated in different hypothalamic regions.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Óscar Brochado ◽  
◽  
Isidoro Martínez ◽  
Juan Berenguer ◽  
Luz Medrano ◽  
...  

Abstract Objective To evaluate the impact of hepatitis C virus (HCV) elimination via interferon (IFN)-based therapy on gene expression profiles related to the immune system in HIV/HCV-coinfected patients. Methods We conducted a prospective study in 28 HIV/HCV-coinfected patients receiving IFN-based therapy at baseline (HIV/HCV-b) and week 24 after sustained virological response (HIV/HCV-f). Twenty-seven HIV-monoinfected patients (HIV-mono) were included as a control. RNA-seq analysis was performed on peripheral blood mononuclear cells (PBMCs). Genes with a fold-change (FC) ≥ 1.5 (in either direction) and false discovery rate (FDR) ≤ 0.05 were identified as significantly differentially expressed (SDE). Results HIV/HCV-b showed six SDE genes compared to HIV-mono group, but no significantly enriched pathways were observed. For HIV/HCV-f vs. HIV/HCV-b, we found 58 SDE genes, 34 upregulated and 24 downregulated in the HIV/HCV-f group. Of these, the most overexpressed were CXCL2, PDCD6IP, ATP5B, IGSF9, RAB26, and CSRNP1, and the most downregulated were IFI44 and IFI44L. These 58 SDE genes revealed two significantly enriched pathways (FDR < 0.05), one linked to Epstein-Barr virus infection and another related to p53 signaling. For HIV/HCV-f vs. HIV-mono group, we found 44 SDE genes that revealed 31 enriched pathways (FDR < 0.05) related to inflammation, cancer/cell cycle alteration, viral and bacterial infection, and comorbidities associated with HIV/HCV-coinfection. Five genes were overrepresented in most pathways (JUN, NFKBIA, PIK3R2, CDC42, and STAT3). Conclusion HIV/HCV-coinfected patients who eradicated hepatitis C with IFN-based therapy showed profound gene expression changes after achieving sustained virological response. The altered pathways were related to inflammation and liver-related complications, such as non-alcoholic fatty liver disease and hepatocellular carcinoma, underscoring the need for active surveillance for these patients.


Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 559-565 ◽  
Author(s):  
Jennifer K. Ho-Chen ◽  
Juan J. Bustamante ◽  
Michael J. Soares

The prolactin (PRL) family of hormones/cytokines is involved in the maintenance of pregnancy and adaptations to physiological stressors. In this report, we identify and characterize a new member of the rat PRL family, examine the impact of maternal hypoxia on placental PRL family gene expression, and investigate maternal adaptive responses to hypoxia. Perusal of the PRL gene family locus in the rat genome resulted in the identification of a putative new member of the rat PRL family. The new member is closely related to the previously reported PRL-like protein-F (PLP-F) and has been named PLP-Fβ and the originally characterized PLP-F, now termed PLP-Fα. The two proteins exhibit structural similarities but possess distinct cell- and temporal-specific expression profiles. In vivo hypoxia stimulates placental PLP-Fα and PLP-E mRNA expression in the rat and mouse, respectively. Rcho-1 trophoblast cells can differentiate into trophoblast giant cells, express PLP-Fα, and exhibit enhanced PLP-Fα mRNA levels when cultured under low oxygen tension (2%). Exposure to hypobaric hypoxia during latter part of pregnancy did not significantly impact the expression of PLP-Fβ mRNA. Finally, exposure to hypobaric hypoxia during midpregnancy led to increased maternal red blood cells, hemoglobin concentrations, hematocrit, and increased concentrations of maternal splenic mRNAs for key proteins involved in hemoglobin synthesis, erythroid Krüppel-like factor, erythroid 5-aminolevulinate synthase-2, and β-major globin. In summary, adaptive responses to maternal hypoxia include activation of placental PLP-Fα/E gene expression, which may then participate in maternal hematological adjustments required for maintaining maternal and fetal oxygen delivery.


2017 ◽  
Author(s):  
Merve Iris ◽  
Pei-Suen Tsou ◽  
Amr H. Sawalha

ABSTRACTObjectivesCaffeine is a widely consumed pharmacologically active product. In the present study, we focused on characterizing immunomodulatory effects of caffeine on peripheral blood mononuclear cells (PMBCs).MethodsThe effect of caffeine on gene expression profiles was initially evaluated using RNA sequencing data. Validation experiments were performed to confirm the results and examine dose-dependent effects of caffeine on PBMCs from healthy subjects. Gene expression levels were measured by real-time quantitative PCR, and cytokine production was determined using a multiplex cytokine assay.ResultsCaffeine at high doses showed a robust downregulatory effect of immune-related genes in PBMCs. Functional annotation analysis of downregulated genes revealed significant enrichment in cytokine activity and in genes related to several autoimmune diseases including lupus and rheumatoid arthritis. Dose-dependent validation experiments showed significant downregulation at the mRNA levels of key inflammatory genes including STAT1, TNF, and PPARG. TNF and PPARG were suppressed even with the lowest caffeine dose tested, which corresponds to the serum concentration of caffeine after administration of one cup of coffee. Cytokine levels of IL-8, MIP-1β, IL-6, IFN-γ, GM-CSF, TNF, IL-2, IL-4, MCP-1, and IL-10 were decreased significantly with caffeine treatment.ConclusionOur findings indicate potential downregulatory effects of caffeine on key inflammatory genes and cytokines, which play important role in autoimmunity. Further studies exploring therapeutic or disease-modulating potential of caffeine in autoimmune diseases and exploring the mechanisms involved are warranted.


2021 ◽  
Vol 11 ◽  
Author(s):  
Michal Koc ◽  
Michaela Šiklová ◽  
Veronika Šrámková ◽  
Marek Štěpán ◽  
Eva Krauzová ◽  
...  

AimDevelopment of type 2 diabetes (T2DM) is associated with disturbances in immune and metabolic status that may be reflected by an altered gene expression profile of peripheral blood mononuclear cells (PBMC). To reveal a potential family predisposition to these alterations, we investigated the regulation of gene expression profiles in circulating CD14+ and CD14- PBMC in fasting conditions and in response to oral glucose tolerance test (OGTT) in glucose tolerant first-degree relatives (FDR) of T2DM patients and in control subjects.Materials and MethodsThis work is based on the clinical study LIMEX (NCT03155412). Non-obese 12 non-diabetic (FDR), and 12 control men without family history of diabetes matched for age and BMI underwent OGTT. Blood samples taken before and at the end of OGTT were used for isolation of circulating CD14+ and CD14- PBMC. In these cells, mRNA levels of 94 genes related to lipid and carbohydrate metabolism, immunity, and inflammation were assessed by qPCR.ResultsIrrespectively of the group, the majority of analyzed genes had different mRNA expression in CD14+ PBMC compared to CD14- PBMC in the basal (fasting) condition. Seven genes (IRS1, TLR2, TNFα in CD14+ PBMC; ABCA1, ACOX1, ATGL, IL6 in CD14- PBMC) had different expression in control vs. FDR groups. OGTT regulated mRNA levels of nine genes selectively in CD14+ PBMC and of two genes (ABCA1, PFKL) selectively in CD14-PBMC. Differences in OGTT-induced response between FDR and controls were observed for EGR2, CCL2 in CD14+ PBMC and for ABCA1, ACOX1, DGAT2, MLCYD, and PTGS2 in CD14- PBMC.ConclusionThis study revealed a different impact of glucose challenge on gene expression in CD14+ when compared with CD14- PBMC fractions and suggested possible impact of family predisposition to T2DM on basal and OGTT-induced gene expression in these PBMC fractions. Future studies on these putative alterations of inflammation and lipid metabolism in fractionated PBMC in larger groups of subjects are warranted.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 708-708 ◽  
Author(s):  
Alyssa Cull ◽  
Brooke Snetsinger ◽  
Michael J. Rauh

Abstract Introduction: In the context of MDS and CMML, little is known about the underlying causes of aberrant immune modulation, particularly with respect to the contribution of recurrently mutated genes. Inactivatingmutations in Tet methylcytosine dioxygenase 2 (TET2) cause loss of hydroxymethylation and a corresponding enrichment of 5-methylcytosine marks, changes which are thought to precipitate clonal dominance and monocytic skewing. Currently, the impact of TET2 loss on the properties of disease-relevant monocytes/macrophages (MΦs) is poorly understood. Therefore, our goals were to (1) characterize Tet2 expression during MΦ LPS and interferon gamma (IFNγ) treatment, (2) determine the effect of Tet2-deficiency on LPS signaling in these cells, and (3) explore how the demethylating agent 5-azacytidine (AZA) impacts abnormally expressed genes in Tet2-knockout MΦs. Methods: Peritoneal (PMΦ) and bone marrow-derived (BMMΦ) MΦs were obtained from Vav1-Cre-driven Tet2 knockout (Tet2-/-) mice in accordance with Queen's Animal Care protocols. Gene expression profiling was performed using the NanoString nCounter Mouse Immunology Gene Expression CodeSet plus 30 custom targets (591 candidate genes in total). Results: Previously, our group reported that Tet2 expression was induced 3h after LPS treatment in both primary PMΦ and BMMΦ cultures as well as RAW264.7 monocytic cells (Cull et al. Blood Abstract 2015: 646). To further understand the signalling pathways underpinning this induction, RAW264.7 cells were treated for 3h with 100ng/mL LPS alone, 10ng/mL IFNγ alone or a combination of LPS and IFNγ, as IFNγ is known to potentiate LPS signalling. As expected, LPS alone caused Tet2 mRNA levels to increase by 4- to 6-fold. The combined treatment of LPS and IFNγ lead to a 5- to 8-fold induction whereas IFNγ alone failed to increase Tet2 expression, suggesting that Tet2 induction is mainly IFNγ-independent. To evaluate relevant TLR4 signalling pathways, RAW264.7 cells were pretreated with the inhibitor compounds SP600125, BAY11-7082 and PD184352 prior to 3h LPS stimulation. Tet2 induction was abolished in cells pretreated with BAY 11-7082, an NF-κB inhibitor. Mining human ChIP-seq data from the ENCODE database indicated a number of NF-κB (p65) binding sites within the putative TET2 promoter and regulatory regions, some of which are conserved in the murine locus. ChIP studies are currently underway to evaluate binding sites of interest. We have previously reported that untreated Tet2-/- PMΦs constitutively overexpress a variety of genes involved in LPS-mediated inflammatory signalling (Cull et al. Blood Abstract 2015: 646). Based on these findings, we used NanoString gene expression analysis to evaluate the status of Tet2-/- versus Tet2f/f BMMΦs (n=3/genotype). We found gene expression in Tet2-/- BMMΦs to be very similar to control cells. In addition, early (3h) LPS gene expression profiles did not differ appreciably between Tet2-/- and Tet2f/f BMMΦs (n=3/genotype). However, at 12-24h following LPS treatment, Il1b, Il6 and Arg1 mRNA expression were significantly elevated in Tet2-/- BMMΦs. Given that IL-1β and IL-6 are both potent pro-inflammatory cytokines whereas Arg1 is associated with anti-inflammatory alternatively activated MΦfunctions (AAMΦ), we hypothesize that Tet2-/- BMMΦs are unable to resolve inflammation and compensate through overexpression of anti-inflammatory genes such as Arg1. Finally, we determined the effect that the hypomethylating agent AZA had on the mRNA expression of Il1b, Il6 and Arg1 in BMMΦs. In a pilot experiment, pooled Tet2-/- BMMΦs (n=3) were treated with 5μM AZA for 24h prior to 12h LPS stimulation. Compared to LPS alone, AZA pretreatment and subsequent LPS stimulation lead to a reduction in Arg1 (0.47-fold) and Il6 (0.65-fold) levels in Tet2-/- BMMΦs, whereas Il1b expression remained similar (0.97-fold). Based on these initial results, we hypothesize that AZA treatment leads to demethylation of genomic regions that have been enriched in methylation marks due to Tet2 loss, leading to the repression of promoters such as Arg1 and Il6. Further studies are underway to address these questions. Conclusions: In summary, we have demonstrated that Tet2 loss in MΦs leads to overexpression of genes involved in LPS signalling and LPS-related inflammation, suggesting that these cells may contribute to the abnormal immune environment found in myeloid cancers. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (2) ◽  
pp. 63-73 ◽  
Author(s):  
Anat Achiron ◽  
Anna Feldman ◽  
Michael Gurevich

Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood.Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC).Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS.Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation.Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0183-0195 ◽  
Author(s):  
Takashi Nakamura ◽  
Tomoya Takeda ◽  
Yoshihiko Tokuji

The common water-soluble organic germanium compound poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) exhibits activities related to immune responses and antioxidant induction. In this study, we evaluated the antioxidative effect of dietary Ge-132 in the plasma of mice. Male ICR mice (seven mice per group) received an AIN-76 diet with 0.05 % Ge-132; three groups received the Ge-132-containing diet for 0, 1 or 4 days. The plasma alpha-tocopherol (α-tocopherol) concentration increased from 6.85 to 9.60 μg/ml after 4 days of Ge-132 intake (p < 0.05). We evaluated the changes in hepatic gene expression related to antioxidative activity as well as in the entire expression profile after one day of Ge-132 intake, using DNA microarray technology. We identified 1,220 genes with altered expression levels greater than 1.5-fold (increased or decreased) as a result of Ge-132 intake, and α-tocopherol transfer protein (Ttpa) gene expression was increased 1.62-fold. Immune activation was identified as the category with the most changes (containing 60 Gene Ontology (GO) term biological processes (BPs), 41 genes) via functional clustering analysis of altered gene expression. Ge-132 affected genes in clusters related to ATP production (22 GO term BPs, 21 genes), lipid metabolism (4 GO term BPs, 38 genes) and apoptosis (5 GO term BPs). Many GO term BPs containing these categories were significantly affected by the Ge-132 intake. Oral Ge-132 intake may therefore have increased plasma α-tocopherol levels by up-regulating α-tocopherol transfer protein (Ttpa) gene expression.


2020 ◽  
Vol 9 (5) ◽  
pp. 1251 ◽  
Author(s):  
Daniel P. Zalewski ◽  
Karol P. Ruszel ◽  
Andrzej Stępniewski ◽  
Dariusz Gałkowski ◽  
Jacek Bogucki ◽  
...  

Chronic venous disease (CVD) is a vascular disease of lower limbs with high prevalence worldwide. Pathologic features include varicose veins, venous valves dysfunction and skin ulceration resulting from dysfunction of cell proliferation, apoptosis and angiogenesis. These processes are partly regulated by microRNA (miRNA)-dependent modulation of gene expression, pointing to miRNA as a potentially important target in diagnosis and therapy of CVD progression. The aim of the study was to analyze alterations of miRNA and gene expression in CVD, as well as to identify miRNA-mediated changes in gene expression and their potential link to CVD development. Using next generation sequencing, miRNA and gene expression profiles in peripheral blood mononuclear cells of subjects with CVD in relation to healthy controls were studied. Thirty-one miRNAs and 62 genes were recognized as potential biomarkers of CVD using DESeq2, Uninformative Variable Elimination by Partial Least Squares (UVE-PLS) and ROC (Receiver Operating Characteristics) methods. Regulatory interactions between potential biomarker miRNAs and genes were projected. Functional analysis of microRNA-regulated genes revealed terms closely related to cardiovascular diseases and risk factors. The study shed new light on miRNA-dependent regulatory mechanisms involved in the pathology of CVD. MicroRNAs and genes proposed as CVD biomarkers may be used to develop new diagnostic and therapeutic methods.


Sign in / Sign up

Export Citation Format

Share Document