scholarly journals Basic locomotor muscle synergies used in land walking are finely tuned during underwater walking

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hikaru Yokoyama ◽  
Tatsuya Kato ◽  
Naotsugu Kaneko ◽  
Hirofumi Kobayashi ◽  
Motonori Hoshino ◽  
...  

AbstractUnderwater walking is one of the most common hydrotherapeutic exercises. Therefore, understanding muscular control during underwater walking is important for optimizing training regimens. The effects of the water environment on walking are mainly related to the hydrostatic and hydrodynamic theories of buoyancy and drag force. To date, muscular control during underwater walking has been investigated at the individual muscle level. However, it is recognized that the human nervous system modularly controls multiple muscles through muscle synergies, which are sets of muscles that work together. We found that the same set of muscle synergies was shared between the two walking tasks. However, some task-dependent modulation was found in the activation combination across muscles and temporal activation patterns of the muscle synergies. The results suggest that the human nervous system modulates activation of lower-limb muscles during water walking by finely tuning basic locomotor muscle synergies that are used during land walking to meet the biomechanical requirements for walking in the water environment.

2021 ◽  
Author(s):  
Hiroki Saito ◽  
Hikaru Yokoyama ◽  
Atsushi Sasaki ◽  
Tatsuya Kato ◽  
Kimitaka Nakazawa

The extent to which muscle synergies represent the neural control of human behavior remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally necessary across behaviors exist. We measured the electromyographic activities of 26 muscles including bilateral trunk and lower limb muscles during 24 locomotion, dynamic and static stability tasks, and extracted the muscle synergies using non-negative matrix factorization. Our results showed that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks by combinations of single and/or merging of synergies. Therefore, our results may support the notion of the low dimensionality in motor outputs, in which the central nervous system flexibly recruits fundamental muscle synergies to execute diverse human behaviors. Further studies using manipulations of the central nervous system and/or neural recording are required the neural representation with such fundamental components of muscle synergies.


2014 ◽  
Vol 573 ◽  
pp. 797-802
Author(s):  
L. Vidhya ◽  
S. Saranya ◽  
S. Poonguzhali

Electromyography (EMG) has been widely used as a tool to understand and distinguish between normal and pathological gait. This study aims at understanding the activation patterns of lower limb muscles viz. Gastrocnemius and Tibialis Anterior in the dominant leg of subjects with normal (n=5) as well as pathological (n=2) gait patterns. The paper presents a normative pattern of these muscles during normal walking condition from which the deviation of affected group from the control group is observed. For this analysis, Surface EMG signals along with Force Sensitive Resistor values are acquired. These surface EMG signals picked up during the muscle activity are interfaced with a PC via EMG acquisition system. The acquired signals were processed and analyzed which can be used for rehabilitative therapy planning.


2018 ◽  
Author(s):  
Alessandro Santuz ◽  
Turgay Akay ◽  
William P. Mayer ◽  
Tyler L. Wells ◽  
Arno Schroll ◽  
...  

AbstractFor exploiting terrestrial and aquatic locomotion, vertebrates must build their locomotor patterns based on an enormous amount of variables. The great number of muscles and joints, together with the constant need for sensory feedback information (e.g. proprioception), make the task of creating and controlling movement a problem with overabundant degrees of freedom. It is widely accepted that the central nervous system might simplify the creation and control of movement. This could happen through the generation of activation patterns, which are common to many different muscles, rather than specific to individual muscles. These activation patterns, called muscle synergies, can be extracted from electromyographic data and describe the modular organization of movement. We extracted muscle synergies from the hindlimb muscle activities of wild type and genetically modified mice, in which sensory feedback from muscle spindles is eliminated. Muscle spindle-deficient mice underwent a modification of the temporal structure (motor primitives) of muscle synergies that resulted in diminished functionality during walking. In addition, both the temporal and spatial components (motor modules) of muscle synergies were severely affected when external perturbations were introduced of when animals were immersed in water. These findings show that group Ia/II sensory feedback from muscle spindles regulates motor function in normal and perturbed walking. Moreover, when group Ib Golgi tendon organ feedback is lacking due to the reduction of gravitational load in conditions of enhanced buoyancy, the modular organization of swimming is almost completely compromised.Significance statementLocomotion on land and in water requires the coordination of a great number of muscle activations and joint movements. Moreover, constant feedback about the position of own body parts in relation to the surrounding environment and the body itself (proprioception) is required to maintain stability and avoid failure. The theory of muscle synergies states that the central nervous system might control muscles in orchestrated groups (synergies) rather than individually. We used this concept on genetically modified mice, lacking one of the two classes of proprioceptors. Our results provide evidence that proprioceptive feedback is required by the central nervous system to accurately tune the modular organization of locomotion.


Author(s):  
Anthony A. Paparo ◽  
Judith A. Murphy

The purpose of this study was to localize the red neuronal pigment in Mytilus edulis and examine its role in the control of lateral ciliary activity in the gill. The visceral ganglia (Vg) in the central nervous system show an over al red pigmentation. Most red pigments examined in squash preps and cryostat sec tions were localized in the neuronal cell bodies and proximal axon regions. Unstained cryostat sections showed highly localized patches of this pigment scattered throughout the cells in the form of dense granular masses about 5-7 um in diameter, with the individual granules ranging from 0.6-1.3 um in diame ter. Tissue stained with Gomori's method for Fe showed bright blue granular masses of about the same size and structure as previously seen in unstained cryostat sections.Thick section microanalysis (Fig.l) confirmed both the localization and presence of Fe in the nerve cell. These nerve cells of the Vg share with other pigmented photosensitive cells the common cytostructural feature of localization of absorbing molecules in intracellular organelles where they are tightly ordered in fine substructures.


Author(s):  
Rajendra Pai N. ◽  
U. Govindaraju

Ayurveda in its principle has given importance to individualistic approach rather than generalize. Application of this examination can be clearly seem like even though two patients suffering from same disease, the treatment modality may change depending upon the results of Dashvidha Pariksha. Prakruti and Pramana both used in Dashvidha Pariksha. Both determine the health of the individual and Bala (strength) of Rogi (Patient). Ayurveda followed Swa-angula Pramana as the unit of measurement for measuring the different parts of the body which is prime step assessing patient before treatment. Sushruta and Charaka had stated different Angula Pramana of each Pratyanga (body parts). Specificity is the characteristic property of Swa-angula Pramana. This can be applicable in present era for example artificial limbs. A scientific research includes collection, compilation, analysis and lastly scrutiny of entire findings to arrive at a conclusion. Study of Pramana and its relation with Prakruti was conducted in 1000 volunteers using Prakruti Parkishan proforma with an objective of evaluation of Anguli Pramana in various Prakriti. It was observed co-relating Pramana in each Prakruti and Granthokta Pramana that there is no vast difference in measurement of head, upper limb and lower limb. The observational study shows closer relation of features with classical texts.


Sign in / Sign up

Export Citation Format

Share Document