scholarly journals Quantum halo states in two-dimensional dipolar clusters

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Guijarro ◽  
G. E. Astrakharchik ◽  
J. Boronat

AbstractA halo is an intrinsically quantum object defined as a bound state of a spatial size which extends deeply into the classically forbidden region. Previously, halos have been observed in bound states of two and less frequently of three atoms. Here, we propose a realization of halo states containing as many as six atoms. We report the binding energies, pair correlation functions, spatial distributions, and sizes of few-body clusters composed by bosonic dipolar atoms in a bilayer geometry. We find two very distinct halo structures, for large interlayer separation the halo structure is roughly symmetric and we discover an unusual highly anisotropic shape of halo states close to the unbinding threshold. Our results open avenues of using ultracold gases for the experimental realization of halos composed by atoms with dipolar interactions and containing as many as six atoms.

1993 ◽  
Vol 08 (09) ◽  
pp. 1613-1628
Author(s):  
T. JAROSZEWICZ ◽  
P.S. KURZEPA

We derive and solve — in an arbitrary number of dimensions — Omnès-type equations for bound-state energies in weakly coupled quantum field theories. We show that, for theories defined in the 1/N expansion, these equations are exact to leading order in 1/N. We derive and discuss the weak coupling and nonrelativistic limits of the Omnès equations. We then calculate the binding energies and effective bound-state couplings in (1+1), (1+2) and (1+3)-dimensional O(N)-invariant ϕ4 theory. We consider both the scalar and symmetric tensor bound states.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shereena Joseph ◽  
Saurabh Pandey ◽  
Swagato Sarkar ◽  
Joby Joseph

Abstract From theoretical model to experimental realization, the bound state in the continuum (BIC) is an emerging area of research interest in the last decade. In the initial years, well-established theoretical frameworks explained the underlying physics for optical BIC modes excited in various symmetrical configurations. Eventually, in the last couple of years, optical-BICs were exploited as a promising tool for experimental realization with advanced nanofabrication techniques for numerous breakthrough applications. Here, we present a review of the evolution of BIC modes in various symmetry and functioning mediums along with their application. More specifically, depending upon the nature of the interacting medium, the excitations of BIC modes are classified into the pure dielectric and lossy plasmonic BICs. The dielectric constituents are again classified as photonic crystal functioning in the subwavelength regime, influenced by the diffraction modes and metasurfaces for interactions far from the diffraction regime. More importantly, engineered functional materials evolved with the pure dielectric medium are explored for hybrid-quasi-BIC modes with huge-quality factors, exhibiting a promising approach to trigger the nanoscale phenomena more efficiently. Similarly, hybrid modes instigated by the photonic and plasmonic constituents can replace the high dissipative losses of metallic components, sustaining the high localization of field and high figure of merit. Further, the discussions are based on the applications of the localized BIC modes and high-quality quasi-BIC resonance traits in the nonlinear harmonic generation, refractometric sensing, imaging, lasing, nanocavities, low loss on-chip communication, and as a photodetector. The topology-controlled beam steering and, chiral sensing has also been briefly discussed.


Author(s):  
K. Bakke

We analyze the influence of a cutoff point on a Coulomb-type potential that stems from the interaction of an electron with electric fields. This cutoff point establishes a forbidden region for the electron. Then, we search for bound state solutions to the Schrödinger equation. In addition, we consider a rotating reference frame. We show that the effects of rotation break the degeneracy of the energy levels. Further, we discuss the Aharonov–Bohm effect for bound states.


2009 ◽  
Vol 20 (01) ◽  
pp. 25-45 ◽  
Author(s):  
SAMEER M. IKHDAIR

We solve the Klein–Gordon equation in any D-dimension for the scalar and vector general Hulthén-type potentials with any l by using an approximation scheme for the centrifugal potential. Nikiforov–Uvarov method is used in the calculations. We obtain the bound-state energy eigenvalues and the corresponding eigenfunctions of spin-zero particles in terms of Jacobi polynomials. The eigenfunctions are physical and the energy eigenvalues are in good agreement with those results obtained by other methods for D = 1 and 3 dimensions. Our results are valid for q = 1 value when l ≠ 0 and for any q value when l = 0 and D = 1 or 3. The s-wave (l = 0) binding energies for a particle of rest mass m0 = 1 are calculated for the three lower-lying states (n = 0, 1, 2) using pure vector and pure scalar potentials.


1972 ◽  
Vol 25 (5) ◽  
pp. 507 ◽  
Author(s):  
LR Dodd

An investigation is made of the properties of a simple three-body system consisting of three particles moving in one dimension and interacting through d-function potentials. The exact equations of three-particle scattering theory for this system are reduced without approximation to a set of three coupled one-dimensional integral equations which are solved numerically for a wide range of different potential strengths and particle masses. For the special case of identical particles the numerical solutions are compared with the exact solutions found previously by the author. The method of solution for general values of the parameters, which is based on computing the eigenvalue trajectories of the kernel of the scattering equations, allows a. systematic search for three-body bound states. In the case of nuclear or atomic-like configurations, a unique symmetric bound state is found and its binding energy computed. For molecular configurations, where there are two identical heavy particles interacting by the exchange of a third light particle, several excited states of both positive and negative parity are found and a comparison is made of their binding energies with the predictions of the adiabatic approximation. A reaction matrix formulation of the exact equations is used to calculate the probabilities of elastic and rearrangement scattering below the threshold for breakup. When the particles are identical, there is no elastic or rearrangement scattering in the backward direction. However, for particles of different mass or potentials of unequal strength, all kinematically possible scattering processes occur and the scattering properties of the model are quite complex. In particular an interesting feature of the calculations is the appearance of cusps in the elastic cross sections at the rearrangement threshold.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Marcel J Tauchert ◽  
Jean-Baptiste Fourmann ◽  
Reinhard Lührmann ◽  
Ralf Ficner

The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a β-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases.


Author(s):  
Lucas Happ ◽  
Matthias Zimmermann ◽  
Maxim A Efremov

Abstract We study a heavy-heavy-light three-body system confined to one space dimension in the regime where an excited state in the heavy-light subsystems becomes weakly bound. The associated two-body system is characterized by (i) the structure of the weakly-bound excited heavy-light state and (ii) the presence of deeply-bound heavy-light states. The consequences of these aspects for the behavior of the three-body system are analyzed. We find a strong indication for universal behavior of both three-body binding energies and wave functions for different weakly-bound excited states in the heavy-light subsystems.


Sign in / Sign up

Export Citation Format

Share Document