scholarly journals Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABAA receptors increases anxiety response in adulthood

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew R. Evrard ◽  
Michael Li ◽  
Hui Shen ◽  
Sheryl S. Smith

AbstractAnxiety is increasingly reported, especially in adolescent females. The etiology is largely unknown, which limits effective treatment. Layer 5 prelimbic cortex (L5PL) increases anxiety responses but undergoes adolescent synaptic pruning, raising the question of the impact of pruning on anxiety. Here we show that preventing L5PL pruning increases anxiety in response to an aversive event in adolescent and adult female mice. Spine density of Golgi-stained neurons decreased ~ 63% from puberty (~ PND35, vaginal opening) to post-puberty (PND56, P < 0.0001). Expression of α4βδ GABAA receptors (GABARs) transiently increased tenfold in L5PL at puberty (P < 0.00001), but decreased post-pubertally. Both global and local knockdown of these receptors during puberty prevented pruning, increasing spine density post-pubertally (P < 0.0001), an effect reversed by blocking NMDA receptors (NMDARs). Pubertal expression of the NMDAR-dependent spine protein kalirin7 decreased (50%, P < 0.0001), an effect prevented by α4 knock-out, suggesting that α4βδ-induced reductions in kalirin7 underlie pruning. Increased spine density due to local α4 knockdown at puberty decreased open arm time on the elevated plus maze post-pubertally (62%, P < 0.0001) in response to an aversive stimulus, suggesting that increases in L5PL synapses increase anxiety responses. These findings suggest that prelimbic synaptic pruning is necessary to limit anxiety in adulthood and may suggest novel therapies.

Neuroscience ◽  
2010 ◽  
Vol 170 (1) ◽  
pp. 214-222 ◽  
Author(s):  
C.A.J. Stern ◽  
F.H.M. Do Monte ◽  
L. Gazarini ◽  
A.P. Carobrez ◽  
L.J. Bertoglio

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mathieu Letellier ◽  
Matthieu Lagardère ◽  
Béatrice Tessier ◽  
Harald Janovjak ◽  
Olivier Thoumine

Neuroligins (Nlgns) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlgn expression level. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlgn1 in CA1 mouse hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 hr selectively increased dendritic spine density and AMPA-receptor-mediated EPSCs in wild-type neurons, but not in Nlgn1 knock-out neurons or when endogenous Nlgn1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP in a Nlgn1-dependent manner. Combined with computer simulations, our data support a model by which Nlgn1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy highlights the impact of Nlgn1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Sonia Afroz ◽  
Julie Parato ◽  
Hui Shen ◽  
Sheryl Sue Smith

Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal.


2019 ◽  
Author(s):  
Mathieu Letellier ◽  
Matthieu Lagardère ◽  
Béatrice Tessier ◽  
Harald Janovjak ◽  
Olivier Thoumine

AbstractNeuroligins (Nlgs) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlg expression. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlg1 in CA1 hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 h selectively increased dendritic spine density and AMPA receptor-mediated EPSCs in wild-type neurons, but not in Nlg1 knock-out neurons or when endogenous Nlg1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP. Combined with computer simulations, our data support a model by which Nlg1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy thus highlights the impact of Nlg1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.Impact StatementOrthogonal to the traditional paradigms used to manipulate neuroligin expression level, the optogenetic trigger of tyrosine phosphorylation supports a strong role of endogenous neuroligin-1 in excitatory synaptic differentiation and potentiation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4269
Author(s):  
Simona Gribaudo ◽  
Daniele Saraulli ◽  
Giulia Nato ◽  
Sara Bonzano ◽  
Giovanna Gambarotta ◽  
...  

Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Ding ◽  
Jin Wang ◽  
Miaoxin Huang ◽  
Zhangpeng Chen ◽  
Jing Liu ◽  
...  

AbstractMicroglia play a key role in regulating synaptic remodeling in the central nervous system. Activation of classical complement pathway promotes microglia-mediated synaptic pruning during development and disease. CD47 protects synapses from excessive pruning during development, implicating microglial SIRPα, a CD47 receptor, in synaptic remodeling. However, the role of microglial SIRPα in synaptic pruning in disease remains unclear. Here, using conditional knock-out mice, we show that microglia-specific deletion of SIRPα results in decreased synaptic density. In human tissue, we observe that microglial SIRPα expression declines alongside the progression of Alzheimer’s disease. To investigate the role of SIRPα in neurodegeneration, we modulate the expression of microglial SIRPα in mouse models of Alzheimer’s disease. Loss of microglial SIRPα results in increased synaptic loss mediated by microglia engulfment and enhanced cognitive impairment. Together, these results suggest that microglial SIRPα regulates synaptic pruning in neurodegeneration.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tiziana Imbriglio ◽  
Remy Verhaeghe ◽  
Nico Antenucci ◽  
Stefania Maccari ◽  
Giuseppe Battaglia ◽  
...  

AbstractmGlu5 metabotropic glutamate receptors are highly expressed and functional in the early postnatal life, and are known to positively modulate NMDA receptor function. Here, we examined the expression of NMDA receptor subunits and interneuron-related genes in the prefrontal cortex and hippocampus of mGlu5−/− mice and wild-type littermates at three developmental time points (PND9, − 21, and − 75). We were surprised to find that expression of all NMDA receptor subunits was greatly enhanced in mGlu5−/− mice at PND21. In contrast, at PND9, expression of the GluN2B subunit was enhanced, whereas expression of GluN2A and GluN2D subunits was reduced in both regions. These modifications were transient and disappeared in the adult life (PND75). Changes in the transcripts of interneuron-related genes (encoding parvalbumin, somatostatin, vasoactive intestinal peptide, reelin, and the two isoforms of glutamate decarboxylase) were also observed in mGlu5−/− mice across postnatal development. For example, the transcript encoding parvalbumin was up-regulated in the prefrontal cortex of mGlu5−/− mice at PND9 and PND21, whereas it was significantly reduced at PND75. These findings suggest that in mGlu5−/− mice a transient overexpression of NMDA receptor subunits may compensate for the lack of the NMDA receptor partner, mGlu5. Interestingly, in mGlu5−/− mice the behavioral response to the NMDA channel blocker, MK-801, was significantly increased at PND21, and largely reduced at PND75. The impact of adaptive changes in the expression of NMDA receptor subunits should be taken into account when mGlu5−/− mice are used for developmental studies.


2010 ◽  
Vol 107 (5) ◽  
pp. 2265-2270 ◽  
Author(s):  
Zachary M. Weil ◽  
Qiuyu Zhang ◽  
Allison Hornung ◽  
David Blizard ◽  
Donald W. Pfaff

Although there is an extensive amount known about specific sensory and motor functions of the vertebrate brain, less is understood about the regulation of global brain states. We have recently proposed that a function termed generalized arousal (Ag) serves as the most elemental driving force in the nervous system, responsible for the initial activation of all behavioral responses. An animal with increased generalized CNS arousal is characterized by greater motor activity, increased responsivity to sensory stimuli, and greater emotional lability. Implicit in this theory was the prediction that increases in generalized arousal would augment specific motivated behaviors that depend on arousal. Here, we address the idea directly by testing two lines of mice bred for high or low levels of generalized arousal and assessing their responses in tests of specific forms of behavioral arousal, sex and anxiety/exploration. We report that animals selected for differential generalized arousal exhibit marked increases in sensory, motor, and emotional reactivity in our arousal assay. Furthermore, male mice selected for high levels of generalized arousal were excitable and showed more incomplete mounts before the first intromission (IN), but having achieved that IN, they exhibited far fewer IN before ejaculating, as well as ejaculating much sooner after the first IN, thus indicating a high level of sexual arousal. Additionally, high-arousal animals of both sexes exhibited greater levels of anxiety-like behaviors and reduced exploratory behavior in the elevated plus maze and light-dark box tasks. Taken together, these data illustrate the impact of Ag on motivated behaviors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253852
Author(s):  
Samit Ganguly ◽  
David Finkelstein ◽  
Timothy I. Shaw ◽  
Ryan D. Michalek ◽  
Kimberly M. Zorn ◽  
...  

Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.


Sign in / Sign up

Export Citation Format

Share Document