scholarly journals Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tina Schumann ◽  
Jörg König ◽  
Christian von Loeffelholz ◽  
Daniel F. Vatner ◽  
Dongyan Zhang ◽  
...  

AbstractGenome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.

2021 ◽  
Vol 12 ◽  
Author(s):  
Timea Kurdiova ◽  
Miroslav Balaz ◽  
Zuzana Kovanicova ◽  
Erika Zemkova ◽  
Martin Kuzma ◽  
...  

AimAfamin is a liver-produced glycoprotein, a potential early marker of metabolic syndrome. Here we investigated regulation of afamin in a course of the metabolic disease development and in response to 3-month exercise intervention.MethodsWe measured whole-body insulin sensitivity (euglycemic hyperinsulinemic clamp), glucose tolerance, abdominal adiposity, hepatic lipid content (magnetic resonance imaging/spectroscopy), habitual physical activity (accelerometers) and serum afamin (enzyme-linked immunosorbent assay) in 71 middle-aged men with obesity, prediabetes and newly diagnosed type 2 diabetes. Effects of 3-month exercise were investigated in 22 overweight-to-obese middle-aged individuals (16M/6F).ResultsPrediabetes and type 2 diabetes, but not obesity, were associated with increased serum afamin (p<0.001). Afamin correlated positively with hepatic lipids, fatty liver index and liver damage markers; with parameters of adiposity (waist circumference, %body fat, adipocyte diameter) and insulin resistance (fasting insulin, C-peptide, HOMA-IR; p<0.001 all). Moreover, afamin negatively correlated with whole-body insulin sensitivity (M-value/Insulin, p<0.001). Hepatic lipids and fasting insulinemia were the most important predictors of serum afamin, explaining >63% of its variability. Exercise-related changes in afamin were paralleled by reciprocal changes in insulinemia, insulin resistance and visceral adiposity. No significant change in hepatic lipid content was observed.ConclusionsSubjects with prediabetes and type 2 diabetes had the highest serum afamin levels. Afamin was more tightly related to hepatic lipid accumulation, liver damage and insulin resistance than to obesity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyan Wu ◽  
Yan Borné ◽  
Rui Gao ◽  
Maykel López Rodriguez ◽  
William C. Roell ◽  
...  

AbstractThe hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1010
Author(s):  
Wei-Hao Hsu ◽  
Chin-Wei Tseng ◽  
Yu-Ting Huang ◽  
Ching-Chao Liang ◽  
Mei-Yueh Lee ◽  
...  

Prediabetes should be viewed as an increased risk for diabetes and cardiovascular disease. In this study, we investigated its prevalence among the relatives and spouses of patients with type 2 diabetes or risk factors for prediabetes, insulin resistance, and β-cell function. A total of 175 individuals were included and stratified into three groups: controls, and relatives and spouses of type 2 diabetic patients. We compared clinical characteristics consisting of a homeostatic model assessment for insulin resistance (HOMA-IR) and beta cell function (HOMA-β), a quantitative insulin sensitivity check index (QUICKI), and triglyceride glucose (TyG) index. After a multivariable linear regression analysis, the relative group was independently correlated with high fasting glucose, a high TyG index, and low β-cell function; the relatives and spouses were independently associated with a low QUICKI. The relatives and spouses equally had a higher prevalence of prediabetes. These study also indicated that the relatives had multiple factors predicting the development of diabetes mellitus, and that the spouses may share a number of common environmental factors associated with low insulin sensitivity.


2014 ◽  
Author(s):  
◽  
Leryn J. Boyle

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Individuals with type 2 diabetes (T2D) have blunted femoral artery insulin mediated blood flow which is critical for the delivery and uptake of glucose into skeletal muscle. However, it is unclear in humans the precise mechanisms by which insulin resistance impairs insulin stimulated blood flow. Further, chronic physical inactivity is a powerful stimulus for reduced insulin sensitivity and vascular dysfunction; however, the effects of short term, modest reductions in physical activity are limited. Thus, we examined 1) if inactivity for 5 days would impair endothelial function in healthy individuals (study one) 2) if reducing whole body insulin sensitivity, via 5 days of inactivity, would impair the blood flow response to insulin stimulation in parallel with glycemic control (study two) and 3) phosphorylation of endothelial nitric oxide (eNOS) and endothelin-1 (ET-1) production to insulin stimulation would be decreased and increased, respectively, in insulin resistant individuals (study three). We demonstrated significant reductions in endothelial function with only 5 days of reduced daily steps while blood flow to glucose ingestion was unaltered. Further, in obese humans with type 2 diabetes it does not appear that that the reduction in blood flow to 1 hr of insulin stimulation is due to altered peNOS or ET-1. Collectively, these data suggest that reduced daily physical activity and chronic insulin resistance mediate negative impacts on vascular function and insulin stimulated blood flow and signaling.


2021 ◽  
Author(s):  
Yu-Hua Tseng ◽  
Lee-Ming Chuang ◽  
Yi-Cheng Chang ◽  
Meng-Lun Hsieh ◽  
Lun Tsou ◽  
...  

Abstract Insulin resistance and obesity are pivotal features of type 2 diabetes mellitus. Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones are potent synthetic PPARγ ligands and insulin sensitizers with undesirable side effects including increased adiposity, fluid retention, and osteoporosis, which limit their clinical use. We and others have proved that 15-keto-PGE2 is an endogenous natural PPARγ ligand. 15-keto-PGE2 is catalyzed by prostaglandin reductase 2 (PTGR2) to become inactive metabolites. We found that 15-keto-PGE2 level is increased in Ptgr2 knockout mice. Ptgr2 knockout mice were protected from diet-induced obesity, insulin resistance, and hepatic steatosis without fluid retention nor reduced bone mineral density. Diet-induced obese mice have drastically reduced 15-keto-PGE2 levels compared to lean mice. Administration of 15-keto-PGE2 markedly improved insulin sensitivity and prevented diet-induced obesity in mice. We demonstrated that 15-keto-PGE2 activates PPARγ through covalent binding to its cysteine 285 residue at helix 3, which restrained its binding pocket between helix 3 and β-sheets of the PPARγ ligand binding domain. This binding mode differs from the helix12-dependent binding mode of thiazolidinediones. We further identified a small-molecule PTGR2 inhibitor BPRPT245, which interferes the interaction between the substrate-binding sites of PTGR2 and 15-keto-PGE2. BPRPT245 increased 15-keto-PGE2 concentration, activated PPARγ, and promoted glucose uptake in adipocytes. BPRPT245 also prevented diet-induced obesity, improved insulin sensitivity and glucose tolerance, lowers fasting glucose without fluid retention and osteoporosis. In humans, reduced serum 15-keto-PGE2 levels were observed in patients with type 2 diabetes compared with controls. Furthermore, serum 15-keto-PGE2 levels correlate inversely with insulin resistance and fasting glucose in non-diabetic humans. In conclusion, we identified a new therapeutic approach to improve insulin sensitivity and protect diet-induced obesity through increasing endogenous natural PPARγ ligands without side effects of thiazolidinediones.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise E. Lackey ◽  
Felipe C. G. Reis ◽  
Roi Isaac ◽  
Rizaldy C. Zapata ◽  
Dalila El Ouarrat ◽  
...  

Abstract Insulin resistance is a key feature of obesity and type 2 diabetes. PU.1 is a master transcription factor predominantly expressed in macrophages but after HFD feeding PU.1 expression is also significantly increased in adipocytes. We generated adipocyte specific PU.1 knockout mice using adiponectin cre to investigate the role of PU.1 in adipocyte biology, insulin and glucose homeostasis. In HFD-fed obese mice systemic glucose tolerance and insulin sensitivity were improved in PU.1 AKO mice and clamp studies indicated improvements in both adipose and liver insulin sensitivity. At the level of adipose tissue, macrophage infiltration and inflammation was decreased and glucose uptake was increased in PU.1 AKO mice compared with controls. While PU.1 deletion in adipocytes did not affect the gene expression of PPARg itself, we observed increased expression of PPARg target genes in eWAT from HFD fed PU.1 AKO mice compared with controls. Furthermore, we observed decreased phosphorylation at serine 273 in PU.1 AKO mice compared with fl/fl controls, indicating that PPARg is more active when PU.1 expression is reduced in adipocytes. Therefore, in obesity the increased expression of PU.1 in adipocytes modifies the adipocyte PPARg cistrome resulting in impaired glucose tolerance and insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document