scholarly journals Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lorna B. Jarvis ◽  
Daniel B. Rainbow ◽  
Valerie Coppard ◽  
Sarah K. Howlett ◽  
Zoya Georgieva ◽  
...  

AbstractThe adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.

2020 ◽  
Author(s):  
Lorna Jarvis ◽  
Daniel Rainbow ◽  
Valerie Coppard ◽  
Sarah Howlett ◽  
Jessica Davies ◽  
...  

Abstract The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression


2019 ◽  
Vol 28 (12) ◽  
pp. 1603-1613 ◽  
Author(s):  
Marcus Bergström ◽  
Malin Müller ◽  
Marie Karlsson ◽  
Hanne Scholz ◽  
Nils Tore Vethe ◽  
...  

Adoptive transfer of autologous polyclonal regulatory T cells (Tregs) is a promising option for reducing graft rejection in allogeneic transplantation. To gain therapeutic levels of Tregs there is a need to expand obtained cells ex vivo, usually in the presence of the mTOR inhibitor Rapamycin due to its ability to suppress proliferation of non-Treg T cells, thus promoting a purer Treg yield. Azithromycin is a bacteriostatic macrolide with mTOR inhibitory activity that has been shown to exert immunomodulatory effects on several types of immune cells. In this study we investigated the effects of Azithromycin, compared with Rapamycin, on Treg phenotype, growth, and function when expanding bulk, naïve, and memory Tregs. Furthermore, the intracellular concentration of Rapamycin in CD4+ T cells as well as in the culture medium was measured for up to 48 h after supplemented. Treg phenotype was assessed by flow cytometry and Treg function was measured as inhibition of responder T-cell expansion in a suppression assay. The concentration of Rapamycin was quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Azithromycin and Rapamycin both promoted a FoxP3-positive Treg phenotype in bulk Tregs, while Rapamycin also increased FoxP3 and FoxP3+Helios positivity in naïve and memory Tregs. Furthermore, Rapamycin inhibited the expansion of naïve Tregs, but also increased their suppressive effect. Rapamycin was quickly degraded in 37°C medium, yet was retained intracellularly. While both compounds may benefit expansion of FoxP3+ Tregs in vitro, further studies elucidating the effects of Azithromycin treatment on Tregs are needed to determine its potential use.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4349-4349
Author(s):  
Tokiko Nagamura-Inoue ◽  
Yuki Yamamoto ◽  
Seiichiro Kobayashi ◽  
Kazuo Ogami ◽  
Kiyoko Izawa ◽  
...  

Abstract Abstract 4349 Background: Regulatory T cells (Tregs) play an important role in immune-tolerance to allograft. Unbalance between Tregs and effector T cells is involved in graft-versus-host disease (GvHD) and other autoimmune disorders. Adoptive use of inducible Tregs (iTregs) is a candidate immunosuppressive therapy, and major concern has been focused on sustained expression of Foxp3 in iTregs. We previously reported that iTregs can be efficiently expanded from cord blood (CB)-derived CD4+ T cells in the presence of IL2, TGFb and a mTOR inhibitor, Everolimus (Eve). However, the effect of Eve on in vitro induction of iTreg remains to be elucidated. Here we studied the impact of Eve on CB-CD4+ T cells. Methods: CD4+ T cells were prepared from CB with a purity of >95% and put into the flask coated with anti-CD3/CD28 MAb. For Treg induction, these cultures were supplemented with IL2, IL-2/TGFb, IL2/TGFb/Eve, or IL2/Eve and kept for two weeks. The resulting CD4+ T cells including variable proportion of iTregs were subjected to mixed lymphocyte reaction (MLR) along with CFSE-labeled autologous responder T cells and allogeneic dendritic cells (DCs) as stimulator. Results: The basal proportion of CD25+Foxp3+ cells in CB-CD4+ T cells was 0.60 ± 0.59%. After two weeks, the induction rate of CD25+Foxp3+CD4+ T cells was higher in the culture with IL2/TGFb/Eve than that with IL2/TGFb, but Eve itself could not significantly induce iTregs in the absence of TGFb (Figure1.). The iTreg ratio (CD25+Foxp3+ cells/total CD4+ T cells) was 79.3 ± 17.4% in the culture with IL2/TGFb/Eve, 53.1 ± 23.8% with IL2/TGFb, 35.5±18.6% with IL2/Eve and 22.7 ± 18.6% with IL2, respectively. There was no significant relationship between the dose of Eve and the iTreg ratio, but the highest ratio and induction rate of iTregs were observed at 10nM Eve. Thus, an average of 2.95 ± 2.8 ×107 iTregs was obtained from 5 ×104 CB-CD4+ T cells after two weeks of culture with IL2/TGFb/Eve. The iTreg-rich population cultured with IL2/TGFb/Eve and IL2/TGFb, but not IL2 alone, efficiently inhibited MLR triggered by allogeneic DCs (Figure 2.). These iTregs were also active in MLR using allogeneic responder T cells. Interestingly, IL2/Eve-treated CB-CD4+ T cells also inhibited MLR, irrespective of the low or moderate iTreg ratio. The inhibitory effect on MLR was much less observed by another mTOR inhibitor, rapamycin, rather than Eve (Figure2). Expression of CD26 on CD4+ T cells was inversely correlated to Foxp3 expression and significantly down-regulated by TGFb with or without Eve. Discussion: Treatment of CB-CD4+ T cells with IL2/TGFb/Eve results in the efficient ex vivo expansion of functional iTregs. Eve enhanced TGFb induction of Foxp3 expression, but did not induce Foxp3 expression by itself. mTOR is a complex of TORC1 and 2. Rapamycin is reported to inhibit TORC1, while Eve inhibits both of them, at general dose. In recent report, mTOR-deficient T cells (TORC1/2, not TORC1 alone) displayed normal activation and IL-2 production upon initial stimulation, but failed to differentiate into effecter T cells, instead, differentiated into Tregs. Although the direct mechanism to inhibit MLR by CB-CD4+ T cells treated with Eve remained to be elucidated, these results suggested the aberrant pathways of immunological inhibition. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linda M. Lee ◽  
Hong Zhang ◽  
Karim Lee ◽  
Horace Liang ◽  
Alexander Merleev ◽  
...  

Alloreactive regulatory T cells (arTregs) are more potent than polyclonal Tregs at suppressing immune responses to transplant antigens. Human arTregs can be expanded with allogeneic CD40L-stimulated B cells (sBcs) or stimulated-matured monocyte-derived dendritic cells (sDCs). Here, we compared the expansion efficiency and properties of arTregs stimulated ex vivo using these two types of antigen-presenting cells. Compared to sBcs, sDCs stimulated Tregs to expand two times more in number. The superior expansion-inducing capacity of sDCs correlated with their higher expression of CD80, CD86, and T cell-attracting chemokines. sBc- and sDC-arTregs expressed comparable levels of FOXP3, HELIOS, CD25, CD27, and CD62L, demethylated FOXP3 enhancer and in vitro suppressive function. sBc- and sDCs-arTregs had similar gene expression profiles that were distinct from primary Tregs. sBc- and sDC-arTregs exhibited similar low frequencies of IFN-γ, IL-4, and IL-17A-producing cells, and the cytokine-producing arTregs expressed high levels of FOXP3. Almost all sBc- and sDC-arTregs expressed CXCR3, which may enable them traffic to inflammatory sites. Thus, sDCs-arTregs that expand more readily, are phenotypically similar to sBc-arTregs, supporting sDCs as a viable alternative for arTreg production for clinical evaluation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1008-1008
Author(s):  
Karnail Singh ◽  
Natalia Kozyr ◽  
Linda Stempora ◽  
Allan D Kirk ◽  
Christian P Larsen ◽  
...  

Abstract Abstract 1008 Regulatory T cells (Tregs) have been shown to be potent inhibitors of autoimmunity, and to be capable of suppressing alloimmune responses that occur during both allograft rejection and graft-versus host disease. However, they have yet to gain widespread use clinically, due in part to the fact that it remains extremely costly and difficult to produce them in sufficient numbers and with sufficient suppressive capacity to significantly impact the alloimmune response. Here we have used our established non-human primate model to demonstrate that significant Treg expansion (up to 600-fold in 21 days) can be maintained, and suppressive capacity enhanced by exposing Treg cultures to a short burst of sirolimus at the end of the culture period. Using a highly sensitive and specific in vitro CFSE-MLR assay we show that Tregs significantly inhibit allo-proliferation of multiple T cell subpopulations including both CD4+ and CD8+ T cells (3.2 and 2.7-fold inhibition of proliferation, respectively), as well as their CD28+CD95+ and CD28-CD95+ subpopulations (2.2 and 2.1 and 1.9 and 2.7-fold inhibition of CD4+ and CD8+ subpopulation proliferation, respectively). Tregs were able to combine in vitro with the newly FDA-approved CTLA4-Ig analog belatacept to enhance the inhibition of alloproliferation that occurred with either agent alone (4.8-fold inhibition of CD8 T cell proliferation with Tregs + belatacept, compared to 3.0-fold or 1.9-fold inhibition of CD8 T cell proliferation with Tregs or belatacept alone, respectively). Importantly, we have found that the suppressive activity of ex-vivo expanded Tregs could be further enhanced by pulsing with sirolimus. Thus, while long-term culture of Tregs in the presence of sirolimus (1–1000 nM) profoundly inhibited Treg expansion (50–800 fold inhibition of expansion when cultured in the presence of 1–1000 nM sirolimus), a 48 hour pulse of sirolimus (100 nM) on days 20–21 of culture completely preserved Treg yields while doubling their suppressive function against CD8 proliferation when compared to unpulsed Tregs, p<0.01) A mechanistic evaluation of the increase potency observed with sirolimus pulsed Tregs (SPTs) has revealed several key differences that distinguish these cells from the less-potent unpulsed Tregs: SPTs were found to undergo fewer rounds of proliferation in an MLR when compared with unpulsed Tregs (14% proliferation in SPTs versus 37% proliferation in un-pulsed Tregs, p= 0.015), suggesting that the suppressive capability of Tregs may be inversely related to their proliferative capacity. SPTs were also shown to have significantly increased expression of CD25 (p=0.04) and total CTLA4 (p= 0.009) compared to unpulsed Tregs, implicating signaling through both of these molecules in their enhanced function. Our results suggest that the creation of SPTs may provide a novel avenue by which to achieve enhanced Treg-based suppression of alloimmunity, in a manner that is amenable to large-scale ex-vivo expansion and to combinatorial therapy with novel, costimulation-blockade-based immunosuppression strategies. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Ming Wang ◽  
Jiaoying Jia ◽  
Yan Cui ◽  
Yong Peng ◽  
Yugang Jiang

AbstractExtracellular vesicles are involved in the occurrence, progression and metastasis of glioblastoma (GBM). GBM can secrete a variety of tumour-derived extracellular vesicles (TDEVs) with high immunosuppressive activity that remotely suppress the systemic immune system, and therapy targeting TDEVs has potential efficacy. In this study, we detected a higher concentration of CD73+ TDEVs enriched in exosomes in central and peripheral body fluids of GBM patients than in those of patients with other brain tumours (low-grade glioma or brain metastases from melanoma or non-small-cell lung cancer). High CD73 expression was detected on the surface of T cells, and this CD73 was derived from TDEVs secreted by GBM cells. In vitro, we observed that CD73+ TDEVs released by GBM cell lines could be taken up by T cells. Moreover, excess adenosine was produced by AMP degradation around T cells and by adenosine receptor 2A (A2AR)-dependent inhibition of aerobic glycolysis and energy-related metabolic substrate production, thereby inhibiting the cell cycle entry and clonal proliferation of T cells. In vivo, defects in exosomal synthesis and CD73 expression significantly inhibited tumour growth in GBM tumour-bearing mice and restored the clonal proliferation of T cells in the central and peripheral regions. These data indicate that CD73+ TDEVs can be used as a potential target for GBM immunotherapy.


2021 ◽  
Author(s):  
Ei Miyamoto ◽  
Akihiro Takahagi ◽  
Akihiro Ohsumi ◽  
Tereza Martinu ◽  
David Hwang ◽  
...  

AbstractSurvival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T cells (Tregs) are being studied for post-implantation cell therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesized that in vitro expanded, recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability.In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localization and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP. Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet- to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intragraft effector CD4+ T cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+, and CD15s+). Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post- transplant. Our organ-directed approach has potential for clinical translation.


2021 ◽  
Author(s):  
Mark Mensink ◽  
Ellen Schrama ◽  
Maartje van den Biggelaar ◽  
Derk Amsen ◽  
Jannie Borst ◽  
...  

The CD4+ regulatory T (Treg) cell lineage, as defined by FOXP3 expression, comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. In human, naive tTreg cells can be purified from blood, but occur in low abundance, while effector pTreg and tTreg cell populations cannot be purified for lack of discriminating cell surface markers. Therefore, studies often employ TGF-β-induced (i)Treg cells that are generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe the relationship of iTreg cells to tTreg and Tconv cells, as optimally purified from human blood. Global proteomic analysis revealed that iTreg, tTreg and Tconv cell populations each have a unique protein expression pattern. We next used as a benchmark a previously defined proteomic signature that discerns ex vivo naive and effector phenotype Treg cells from Tconv cells and reflects unique Treg cell properties. This Treg cell core signature was largely absent from iTreg cells, while clearly present in simultaneously analyzed tTreg cells. In addition, we used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naive Treg cells. This effector Treg cell signature was partially present in iTreg cells. Thus, iTreg cells are distinct from tTreg cells and largely lack the common Treg cell proteomic signature. However, they do have certain protein expression features in common with ex vivo effector Treg cells. These data demonstrate the utility of the core and effector Treg cell signatures as tools to define Treg cell populations and encourage the use of ex vivo Treg cells for functional analyses.


Sign in / Sign up

Export Citation Format

Share Document