scholarly journals Inferring the stabilization effects of SARS-CoV-2 variants on the binding with ACE2 receptor

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Mattia Miotto ◽  
Lorenzo Di Rienzo ◽  
Giorgio Gosti ◽  
Leonardo Bo’ ◽  
Giacomo Parisi ◽  
...  

AbstractAs the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic continues to spread, several variants of the virus, with mutations distributed all over the viral genome, are emerging. While most of the variants present mutations having little to no effects at the phenotypic level, some of these variants are spreading at a rate that suggests they may present a selective advantage. In particular, these rapidly spreading variants present specific mutations on the spike protein. These observations call for an urgent need to characterize the effects of these variants’ mutations on phenotype features like contagiousness and antigenicity. With this aim, we performed molecular dynamics simulations on a selected set of possible spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. We specifically focused on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African, and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 spike protein and its human ACE2 receptor. We characterize these variants’ effect in terms of (i) residue mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of these mutations in the population. Ultimately, we show that the proposed observables describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants.

2021 ◽  
Author(s):  
Mattia Miotto ◽  
Lorenzo Di Rienzo ◽  
Giorgio Gosti ◽  
Leonardo Bo ◽  
Giacomo Parisi ◽  
...  

With the progression of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, several variants of the virus are emerging with mutations distributed all over the viral sequence. While most of them are expected to have little to no effects at the phenotype level, some of these variants presenting specific mutations on the Spike protein are rapidly spreading, making urgent the need of characterizing their effects on phenotype features like contagiousness and antigenicity. With this aim, we performed extensive molecular dynamics simulations on a selected set of possible Spike variants in order to assess the stabilizing effect of particular amino acid substitutions, with a special focus on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 Spike protein and its human ACE2 receptor. We characterize these variants' effect in terms of (i) residues mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of such kind of mutations in the population. Ultimately, we show that the observables we propose describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants.


2021 ◽  
Author(s):  
Saman Fatihi ◽  
Surabhi Rathore ◽  
Ankit Pathak ◽  
Deepanshi Gahlot ◽  
Mitali Mukerji ◽  
...  

AbstractThe recent release of SARS-CoV-2 genomic data from several countries has provided clues into the potential antigenic drift of the coronavirus population. In particular, the genomic instability observed in the spike protein necessitates immediate action and further exploration in the context of viral-host interactions. Here we dynamically track 3,11,795 genome sequences of spike protein, which comprises 2,584 protein mutations. We reveal mutational genomic ensemble at different timing and geographies, that evolves on four distinct residues. In addition to the well-established N501 mutational cluster, we detect the presence of three novel clusters, namely A222, N439, and S477. The robust examination of structural features from 44 known cryo-EM structures showed that the virus is deploying many mutations within these clusters on structurally heterogeneous regions. One such dominant variant D614G was also simulated using molecular dynamics simulations and, as compared to wild-type, we found higher stability with human ACE2 receptor. There is also a significant overlap of mutational clusters on known epitopes, indicating putative interference with antibody binding. Thus, we propose that the resulting coaxility of mutational clusters is the most efficient feature of SARS-CoV-2 evolution and provides precise mutant combinations that can enable future vaccine re-positioning.


2022 ◽  
Author(s):  
Emine Deniz Tekin

We perform all-atom molecular dynamics simulations to study the effects of the N-linked glycans on the stability of the spike glycoprotein in SARS-CoV-2. After a 100 ns of simulation on the spike proteins without and with the N-linked glycans, we found that the presence of glycans increases the local stability in their vicinity; even though their effect on the full structure is negligible.


mBio ◽  
2021 ◽  
Author(s):  
Ya-Wen Cheng ◽  
Tai-Ling Chao ◽  
Chiao-Ling Li ◽  
Sheng-Han Wang ◽  
Han-Chieh Kao ◽  
...  

Analysis of viral genomes and monitoring of the evolutionary trajectory of SARS-CoV-2 over time has identified the D614G substitution in spike (S) as the most prevalent expanding variant worldwide, which might confer a selective advantage in transmission. Several studies showed that the D614G variant replicates and transmits more efficiently than the wild-type virus, but the mechanism is unclear.


2021 ◽  
Author(s):  
Soumya Lipsa Rath ◽  
Aditya Kumar Padhi ◽  
Nabanita Mandal

The emergence of new SARS-CoV-2 variants poses a threat to the human population where it is difficult to assess the severity of a particular variant of the virus. Spike protein and specifically its receptor binding domain (RBD) which makes direct interaction with the ACE2 receptor of the human has shown prominent amino acid substitutions in most of the Variants of Concern. Here, by using all-atom molecular dynamics simulations we compare the interaction of Wild-type RBD/ACE2 receptor complex with that of the latest Omicron variant of the virus. We observed a very interesting diversification of the charge, dynamics and energetics of the protein complex formed upon mutations. These results would help us in understanding the molecular basis of binding of the Omicron variant with that of SARS-CoV-2 Wild-type.


Genetics ◽  
1980 ◽  
Vol 96 (4) ◽  
pp. 1007-1017
Author(s):  
Barry G Hall

ABSTRACT Evolution of lactose utilization via the ebg system of Escherichia coli requires both structural gene (ebgA) and regulatory gene (ebgR) mutations. Because evolution of new metabolic functions in diploids might be subject to constraints not present in haploid organisms, merodiploid strains carrying a wild-type and an evolved ebgA allele, or a wild-type and an evolved ebgR allele were constructed. I show that heterozygosity at ebgA does not significantly affect the selective advantage of the evolved ebgA allele; whereas heterozygosity at ebgR eliminates the selective advantage of the evolved ebgR allele. It is suggested that, in diploid organisms, evolution of new functions for systems under negative control would be very difficult.


2021 ◽  
Author(s):  
Mehr Ali Mahmood Janlou ◽  
Hassan sahebjamee ◽  
Shademan Shokravi

Abstract The emergence of some mutations in the SARS-CoV-2 receptor binding domain (RBD) can increase the spread and pathogenicity due to the conformational changes and increase the stability of Spike protein. Due to the formation of different strains of SARS-CoV-2 by mutations, and their catastrophic effect on public health, the study of the effect of mutations by scientists and researchers around the world is inevitable. According to available evidence, the S494P variant is observed in several SARS-CoV-2 strains from Michigan, USA. To investigate how the S494P natural mutation alters receptor binding affinity in RBD, we performed structural analysis of wild-type and mutant spike proteins using some bioinformatics and computational tools. The results show that S494P mutation increases the spike protein stability. Also, applying docking by HADDOCK displayed higher binding affinity to hACE2 for mutant spike than wild type possibly due to the increased β-strand and Turn secondary structures which increases surface accessibly surface area (SASA) and chance of interaction. The analysis of S494P as a critical RBD mutation may provide the continuing surveillance of spike mutations to aid in the development of COVID-19 drugs and vaccines.


2021 ◽  
Author(s):  
Vipul Kumar ◽  
Jasdeep Singh ◽  
Seyed E. Hasnain ◽  
Durai Sundar

AbstractThe Severe Acute syndrome corona Virus 2 (SARS-CoV-2) outbreak in December 2019 has caused a global pandemic. The rapid mutation rate in the virus has caused alarming situations worldwide and is being attributed to the false negativity in RT-PCR tests, which also might lead to inefficacy of the available drugs. It has also increased the chances of reinfection and immune escape. We have performed Molecular Dynamic simulations of three different Spike-ACE2 complexes, namely Wildtype (WT), B.1.1.7 variant (N501Y Spike mutant) and B.1.617 variant (L452R, E484Q Spike mutant) and compared their dynamics, binding energy and molecular interactions. Our result shows that mutation has caused the increase in the binding energy between the Spike and hACE2. In the case of B.1.617 variant, the mutations at L452R and E484Q increased the stability and intra-chain interactions in the Spike protein, which may change the interaction ability of human antibodies to this Spike variant. Further, we found that the B.1.1.7 variant had increased hydrogen interaction with LYS353 of hACE2 and more binding affinity in comparison to WT. The current study provides the biophysical basis for understanding the molecular mechanism and rationale behind the increase in the transmissivity and infectivity of the mutants compared to wild-type SARS-CoV-2.


2018 ◽  
Vol 116 (37) ◽  
pp. 18227-18232 ◽  
Author(s):  
Zhu Liang ◽  
Wei Bu ◽  
Karl J. Schweighofer ◽  
David J. Walwark ◽  
Jeffrey S. Harvey ◽  
...  

During solvent extraction, amphiphilic extractants assist the transport of metal ions across the liquid–liquid interface between an aqueous ionic solution and an organic solvent. Investigations of the role of the interface in ion transport challenge our ability to probe fast molecular processes at liquid–liquid interfaces on nanometer-length scales. Recent development of a thermal switch for solvent extraction has addressed this challenge, which has led to the characterization by X-ray surface scattering of interfacial intermediate states in the extraction process. Here, we review and extend these earlier results. We find that trivalent rare earth ions, Y(III) and Er(III), combine with bis(hexadecyl) phosphoric acid (DHDP) extractants to form inverted bilayer structures at the interface; these appear to be condensed phases of small ion–extractant complexes. The stability of this unconventional interfacial structure is verified by molecular dynamics simulations. The ion–extractant complexes at the interface are an intermediate state in the extraction process, characterizing the moment at which ions have been transported across the aqueous–organic interface, but have not yet been dispersed in the organic phase. In contrast, divalent Sr(II) forms an ion–extractant complex with DHDP that leaves it exposed to the water phase; this result implies that a second process that transports Sr(II) across the interface has yet to be observed. Calculations demonstrate that the budding of reverse micelles formed from interfacial Sr(II) ion–extractant complexes could transport Sr(II) across the interface. Our results suggest a connection between the observed interfacial structures and the extraction mechanism, which ultimately affects the extraction selectivity and kinetics.


Derrida Today ◽  
2010 ◽  
Vol 3 (1) ◽  
pp. 21-36
Author(s):  
Grant Farred

‘The Final “Thank You”’ uses the work of Jacques Derrida and Friedrich Nietzsche to think the occasion of the 1995 rugby World Cup, hosted by the newly democratic South Africa. This paper deploys Nietzsche's Zarathustra to critique how a figure such as Nelson Mandela is understood as a ‘Superman’ or an ‘Overhuman’ in the moment of political transition. The philosophical focus of the paper, however, turns on the ‘thank yous’ exchanged by the white South African rugby captain, François Pienaar, and the black president at the event of the Springbok victory. It is the value, and the proximity and negation, of the ‘thank yous’ – the relation of one to the other – that constitutes the core of the article. 1


Sign in / Sign up

Export Citation Format

Share Document