scholarly journals Primordial mimicry induces morphological change in Escherichia coli

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Lu ◽  
Honoka Aida ◽  
Masaomi Kurokawa ◽  
Feng Chen ◽  
Yang Xia ◽  
...  

AbstractThe morphology of primitive cells has been the subject of extensive research. A spherical form was commonly presumed in prebiotic studies but lacked experimental evidence in living cells. Whether and how the shape of living cells changed are unclear. Here we exposed the rod-shaped bacterium Escherichia coli to a resource utilization regime mimicking a primordial environment. Oleate was given as an easy-to-use model prebiotic nutrient, as fatty acid vesicles were likely present on the prebiotic Earth and might have been used as an energy resource. Six evolutionary lineages were generated under glucose-free but oleic acid vesicle (OAV)-rich conditions. Intriguingly, fitness increase was commonly associated with the morphological change from rod to sphere and the decreases in both the size and the area-to-volume ratio of the cell. The changed cell shape was conserved in either OAVs or glucose, regardless of the trade-offs in carbon utilization and protein abundance. Highly differentiated mutations present in the genome revealed two distinct strategies of adaption to OAV-rich conditions, i.e., either directly targeting the cell wall or not. The change in cell morphology of Escherichia coli for adapting to fatty acid availability supports the assumption of the primitive spherical form.

2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Eleni Vasilakou ◽  
Mark C. M. van Loosdrecht ◽  
S. Aljoscha Wahl

Sign in / Sign up

Export Citation Format

Share Document