scholarly journals Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Qingqing Fang ◽  
Yu Feng ◽  
Alan McNally ◽  
Zhiyong Zong

AbstractCarbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe global health challenge. We isolate and characterize two previously unidentified lytic phages, P24 and P39, with large burst sizes active against ST11 KL64, a major CRKP lineage. P24 and P39 represent species of the genera Przondovirus (Studiervirinae subfamily) and Webervirus (Drexlerviridae family), respectively. P24 and P39 together restrain CRKP growth to nearly 8 h. Phage-resistant mutants exhibit reduced capsule production and decreased virulence. Modifications in mshA and wcaJ encoding capsule polysaccharide synthesis mediate P24 resistance whilst mutations in epsJ encoding exopolysaccharide synthesis cause P39 resistance. We test P24 alone and together with P39 for decolonizing CRKP using mouse intestinal colonization models. Bacterial load shed decrease significantly in mice treated with P24 and P39. In conclusion, we report the characterization of two previously unidentified lytic phages against CRKP, revealing phage resistance mechanisms and demonstrating the potential of lytic phages for intestinal decolonization.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuxia Lin ◽  
Menglu Wu ◽  
Hanbing Yu ◽  
Xiaojiong Jia ◽  
Hua Zou ◽  
...  

Aim: We aim to depict the clinicoepidemiological and molecular information of carbapenem-resistant Enterobacteriales (CRE) in Chongqing, China.Methods: We performed a prospective, observational cohort study, recruiting inpatients diagnosed with CRE infections from June 1, 2018, to December 31, 2019. We carried out strain identification and molecular characterization of CRE. eBURST analysis was conducted to assess the relationships among the different isolates on the basis of their sequence types (STs) and associated epidemiological data using PHYLOViZ. Clinical parameters were compared between the carbapenemase-producing Enterobacteriales (CPE) and non-CPE group.Findings: 128 unique CRE isolates from 128 patients were collected during the study period: 69 (53.9%) CPE and 59 (46.1%) non-CPE. The majority of CPE isolates were blaKPC-2 (56.5%), followed by blaNDM (39.1%) and blaIMP (5.8%). Klebsiella pneumoniae carbapenemase (KPC)–producing clonal group 11 Klebsiella pneumoniae (K. pneumoniae) was the most common CPE. Antibiotic resistance was more frequent in the CPE group than in the non-CPE group. Independent predictors for CPE infection were ICU admission and hepatobiliary system diseases. Although, there was no significant difference in desirability of outcome ranking (DOOR) outcomes between the two groups. At 30 days after index culture, 35 (27.3% ) of these patients had died.Conclusion: CRE infections were related to high mortality and poor outcomes, regardless of CRE subgroups. CPE were associated with prolonged ICU stays and had different clinical and microbiological characteristics than non-CPE. The identification of CPE/non-CPE and CRE resistance mechanisms is essential for better guidance of the clinical administration of patients with CRE infections.


2021 ◽  
Vol 9 (2) ◽  
pp. 271
Author(s):  
Yuarn-Jang Lee ◽  
Chih-Hung Huang ◽  
Noor Andryan Ilsan ◽  
I-Hui Lee ◽  
Tzu-Wen Huang

Urinary tract infections (UTIs) are common in clinics and hospitals and are associated with a high economic burden. Enterobacterium Klebsiella pneumoniae is a prevalent agent causing UTIs. A high prevalence of carbapenem-resistant K. pneumoniae (CRKP) has emerged recently and is continuing to increase. Seventeen urinary CRKP isolates collected at a teaching hospital in Taiwan from December 2016 to September 2017 were analyzed to elucidate their drug resistance mechanisms. Two-thirds of the isolates were obtained from outpatients. Antimicrobial susceptibility tests demonstrated multidrug resistance in all the isolates. Multilocus sequence typing analysis showed high diversity among the isolates. PCR analysis demonstrated the presence of carbapenemases in three isolates. All isolates carried at least one other extended-spectrum β-lactamase, including TEM, DHA, and CTX-M. Fifteen isolates contained mutations in one of the outer membrane porins that were assessed. The expression levels of the acrB and/or oqxB efflux pump genes, as determined by qRT-PCR, were upregulated in 11 isolates. Six isolates might have utilized other efflux pumps or antimicrobial resistance mechanisms. These analyses demonstrated a highly diverse population and the presence of complex resistance mechanisms in urinary isolates of K. pneumoniae.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Li ◽  
Zi-Yan Huang ◽  
Ting Yu ◽  
Xiao-Yan Tao ◽  
Yong-Mei Hu ◽  
...  

Abstract Background The molecular characterization of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) isolates is not well studied. Our goal was to investigate the molecular epidemiology of CR-hvKP strains that were isolated from a Chinese hospital. Results All clinical carbapenem-resistant K. pneumoniae (CR-KP) isolates were collected and identified from patient samples between 2014 and 2017 from a Chinese hospital. The samples were subjected to screening for CR-hvKP by string test and the detection of the aerobactin gene. CR-hvKP isolates were further confirmed through neutrophil phagocytosis and a mice lethality assay. The CR-hvKP isolates were investigated for their capsular genotyping, virulence gene profiles, and the expression of carbapenemase genes by PCR and DNA sequencing. Multilocus sequence type (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to exclude the homology of these isolates. Twenty strains were identified as CR-hvKP. These strains were resistant to imipenem and several other antibiotics, however, most were susceptible to amikacin. Notably, two isolates were not susceptible to tigecycline. Capsular polysaccharide synthesis genotyping revealed that 17 of the 20 CR-hvKP strains belonged to the K2 serotype, while the others belonged to serotypes other than K1, K2, K5, K20, and K57. The strains were found to be positive for 10 types of virulence genes and a variety of these genes coexisted in the same strain. Two carbapenemase genes were identified: blaKPC-2 (13/20) and blaNDM-1 (1/20). PFGE typing revealed eight clusters comprising isolates that belonged to MLST types ST25, ST11 and ST375, respectively. PFGE cluster A was identified as the main cluster, which included 11 isolates that belong to ST25 and mainly from ICU department. Conclusions Our findings suggest that hospital-acquired infections may contribute in part to the CR-hvKP strains identified in this study. It also suggests that ST25 CR-hvKP strain has a clonal distribution in our hospital. Therefore, effective surveillance and strict infection control strategies should be implemented to prevent outbreak by CR-hvKP strains in hospitals setting.


2020 ◽  
Vol 8 (9) ◽  
pp. 1392 ◽  
Author(s):  
Maria J. Pons ◽  
Marta Marí-Almirall ◽  
Barbara Ymaña ◽  
Jeel Moya-Salazar ◽  
Laura Muñoz ◽  
...  

The aim of this study was to characterize carbapenem-resistant Klebsiella pneumoniae (CR-Kp) isolates recovered from adults and children with severe bacteremia in a Peruvian Hospital in June 2018. Antimicrobial susceptibility was determined by disc/gradient diffusion and broth microdilution when necessary. Antibiotic resistance mechanisms were evaluated by PCR and DNA sequencing. Clonal relatedness was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid typing was performed with a PCR-based method. Thirty CR-Kp isolates were recovered in June 2018. All isolates were non-susceptible to all β-lactams, ciprofloxacin, gentamicin and trimethoprim-sulfamethoxazole, while mostly remaining susceptible to colistin, tigecycline, levofloxacin and amikacin. All isolates carried the blaNDM-1 gene and were extended spectrum β-lactamase (ESBL) producers. PFGE showed four different pulsotypes although all isolates but two belonged to the ST348 sequence type, previously reported in Portugal. blaNDM-1 was located in an IncFIB-M conjugative plasmid. To our knowledge, this is the first report of an New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae recovered from both children and adults in Lima, Peru, as well as the first time that the outbreak strain ST348 is reported in Peru and is associated with NDM. Studies providing epidemiological and molecular data on CR-Kp in Peru are essential to monitor their dissemination and prevent further spread.


2018 ◽  
Vol 6 (21) ◽  
Author(s):  
Qiong Chen ◽  
Jia-wei Zhou ◽  
Sheng-hai Wu ◽  
Xiao-hua Meng ◽  
Dao-jun Yu ◽  
...  

ABSTRACT Bloodstream infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) strains have been a severe problem with high clinical costs and high mortality rates. The bla KPC-2-producing CRKP strain XPY20 was collected from the blood of a patient. The genome characteristics and antimicrobial resistance mechanisms were determined using next-generation sequencing.


2014 ◽  
Vol 58 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Hosam M. Zowawi ◽  
Anna L. Sartor ◽  
Hanan H. Balkhy ◽  
Timothy R. Walsh ◽  
Sameera M. Al Johani ◽  
...  

ABSTRACTThe molecular epidemiology and mechanisms of resistance of carbapenem-resistantEnterobacteriaceae(CRE) were determined in hospitals in the countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic-resistant genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Sixty-two isolates which screened positive for potential carbapenemase production were assessed, and 45 were found to produce carbapenemase. The most common carbapenemases were of the OXA-48 (35 isolates) and NDM (16 isolates) types; 6 isolates were found to coproduce the OXA-48 and NDM types. No KPC-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with seven clusters of clonally relatedKlebsiella pneumoniae. Awareness of CRE in GCC countries has important implications for controlling the spread of CRE in the Middle East and in hospitals accommodating patients transferred from the region.


Sign in / Sign up

Export Citation Format

Share Document