scholarly journals Diffusive skin effect and topological heat funneling

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pei-Chao Cao ◽  
Ying Li ◽  
Yu-Gui Peng ◽  
Minghong Qi ◽  
Wen-Xi Huang ◽  
...  

AbstractNon-Hermitian wave system has attracted intense attentions in the past decade since it reveals interesting physics and generates various counterintuitive effects. However, in the diffusive system that is inherently non-Hermitian with natural dissipation, the robust control of heat flow is hitherto still a challenge. Here we introduce the skin effect into diffusive systems. Different from the skin effect in wave systems, where asymmetric couplings were enabled by dynamic modulations or judicious gain/loss engineering, asymmetric couplings of the temperature fields in diffusive systems can be realized by directly contacted metamaterial channels. Topological heat funneling is further presented, where the temperature field automatically concentrates towards a designated position and shows a strong immunity against the defects. Our work indicates that the diffusive system can provide a distinctive platform for exploring non-Hermitian physics as well as thermal topology.

Vestnik MGSU ◽  
2019 ◽  
pp. 12-21
Author(s):  
Andrey V. Mishchenko

Introduction. Presents a method for modeling a two-dimensional stationary temperature field in a layered rod. The peculiarity of the structure of the rod is the presence of discontinuity of the width of the cross section in the direction of heat flow and multilayer. Identification of the temperature field in such rods is a necessary step in solving the problem of thermoelasticity. The relevance of the problem lies in the development of analytical methods for analysis layered rods of complex geometric shape with thermal effects, with acceptable computational complexity and necessary accuracy. Materials and methods. For a multilayer rod, a method for constructing an approximate solution of the Dirichlet stationary heat conduction problem with a transverse heat flow direction is considered. Within each layer, the temperature distribution function is represented as a sum of two functions. The first function, linear in the direction of the heat flow, reflects the exact solution of the problem for a rectangular layered section. The second function is the correction nonlinear function of two variables. It describes the nonlinear distortions of the temperature field due to the presence of discontinuities in the width of the cross section. The correction function, according to the Fourier method, is represented as a product of a given coordinate function and the sum of the sought amplitudes caused by the width breaks. The functions of the effect of breaking the width on temperature fields in adjacent layers are introduced. An approximate formulation of the Dirichlet problem with integral conjugation conditions on interlayer boundaries is formulated. Results. The parameters of the stationary temperature field were calculated for a seven-layer section of a T-shaped form with alternating layers of carbon and steel. Testing the results of the Ansys program showed good qualitative and quantitative correspondence of two-dimensional temperature fields. Conclusions. The obtained solution satisfactorily describes the temperature field in the cross section of a layered rod in the vicinity of its geometric features. The method is characterized by acceptable laboriousness and accuracy suitable for solving the problem of thermoelasticity of a layered rod.


Author(s):  
Guilherme Ramalho Costa ◽  
José Aguiar santos junior ◽  
José Ricardo Ferreira Oliveira ◽  
Jefferson Gomes do Nascimento ◽  
Gilmar Guimaraes

Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


Author(s):  
Luis San Andrés ◽  
Feng Yu ◽  
Kostandin Gjika

Engine oil lubricated (semi) floating ring bearing (S)FRB systems in passenger vehicle turbochargers (TC) operate at temperatures well above ambient and must withstand large temperature gradients that can lead to severe thermo-mechanical induced stresses. Physical modeling of the thermal energy flow paths and an effective thermal management strategy are paramount to determine safe operating conditions ensuring the TC component mechanical integrity and the robustness of its bearing system. On occasion, the selection of one particular bearing parameter to improve a certain performance characteristic could be detrimental to other performance characteristics of a TC system. The paper details a thermohydrodynamic model to predict the hydrodynamic pressure and temperature fields and the distribution of thermal energy flows in the bearing system. The impact of the lubricant supply conditions (pressure and temperature), bearing film clearances, oil supply grooves on the ring ID surface are quantified. Lubricating a (S)FRB with either a low oil temperature or a high supply pressure increases (shear induced) heat flow. A lube high supply pressure or a large clearance allow for more flow through the inner film working towards drawing more heat flow from the hot journal, yet raises the shear drag power as the oil viscosity remains high. Nonetheless, the peak temperature of the inner film is not influenced much by the changes on the way the oil is supplied into the film as the thermal energy displaced from the hot shaft into the film is overwhelming. Adding axial grooves on the inner side of the (S)FRB improves its dynamic stability, albeit increasing the drawn oil flow as well as the drag power and heat flow from the shaft. The predictive model allows to identify a compromise between different parameters of groove designs thus enabling a bearing system with a low power consumption.


2007 ◽  
Vol 353-358 ◽  
pp. 2003-2006 ◽  
Author(s):  
Wei Tan ◽  
Chang Qing Sun ◽  
Chun Fang Xue ◽  
Yao Dai

Method of Lines (MOLs) is introduced to solve 2-Dimension steady temperature field of functionally graded materials (FGMs). The main idea of the method is to semi–discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs with functions of thermal properties. As numerical examples, six kinds of material thermal conductivity functions, i.e. three kinds of polynomial functions, an exponent function, a logarithmic function, and a sine function are selected to simulate spatial thermal conductivity profile in FGMs respectively. The steady-state temperature fields of 2-D thermal transfer problem are analyzed by the MOLs. Numerical results show that different material thermal conductivity function has obvious different effect on the temperature field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


2016 ◽  
Vol 10 (1) ◽  
pp. 205-219
Author(s):  
Qiu Hongbo ◽  
Dong Yu ◽  
Yang Cunxiang

Power rectifiers are very necessary in the wind power generation systems since they are the necessary channels that link the generator and power gird together. However, they have some effects on the permanent magnet wind generator due to their work on fast on-off transitions. Taking an 8kW 2000r/min wind-driven permanent magnet generator as an example, the system model and external circuit were established. Firstly, based on the field-circuit coupling calculation method, the voltage and current harmonics have been studied respectively when the generator was connected to rectifier loads and pure resistance loads, so did the total harmonic distortion. The mechanism of harmonic impacted by rectifiers was revealed. Secondly, combined the harmonic electromagnetic field theory, the stator core loss, armature winding copper loss and rotor eddy loss were analyzed when the generator connected different loads. Furthermore, according to the definition of nonlinear circuits PF, the numerical analysis method was adopted to calculate the power factor when the generator connected two loads respectively. The change mechanism of PF impacted by rectifiers has been revealed. In addition, the temperature field model has been established and the generator temperature was also analyzed. The temperature distributions were obtained when the wind generator was connected to different loads. Then, the relationship between losses and temperature was combined, the change rules of permanent magnet temperature by the eddy current loss were studied under different load. At last, it can prove that the rectifiers have influences on both electromagnetic field and temperature field through comparing the simulation results with experimental test data.


Author(s):  
Xiaoting Lu ◽  
Yang Li ◽  
Zailiang Chen

Objective: Ironless, permanent magnet, synchronous linear (IPMSL) motors are applied widely in precision servo control for the nonexistence of cogging forces and comparatively small fluctuations in thrust and speed. Method: The air and water cooling structures are designed by assuming the heat loss in the motor operations is the source for the distribution of the temperature field in the analysis under natural cooling. Conclusion: The temperature fields of the linear motor under the two cooling modes are compared and analyzed, which helps monitor the temperature of linear motors during development and operations.


Sign in / Sign up

Export Citation Format

Share Document