The Bad Language of Wild Birds

1899 ◽  
Vol 47 (1209supp) ◽  
pp. 19389-19390
Author(s):  
Charles A. Witchell
Keyword(s):  
1924 ◽  
Vol 58 (659) ◽  
pp. 572-574 ◽  
Author(s):  
H. B. Yocom ◽  
Ben I. Phillips

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Knut Madslien ◽  
Torfinn Moldal ◽  
Britt Gjerset ◽  
Sveinn Gudmundsson ◽  
Arne Follestad ◽  
...  

Abstract Background Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. Results We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. Conclusions The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


Author(s):  
Lene Jung Kjær ◽  
Charlotte Kristiane Hjulsager ◽  
Lars Erik Larsen ◽  
Anette Ella Boklund ◽  
Tariq Halasa ◽  
...  

2021 ◽  
pp. 108978
Author(s):  
Yulei Li ◽  
Minghui Li ◽  
Jingman Tian ◽  
Xiaoli Bai ◽  
Yanbing Li

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Eun-Jee Na ◽  
Young-Sik Kim ◽  
Sook-Young Lee ◽  
Yoon-Ji Kim ◽  
Jun-Soo Park ◽  
...  

Wild aquatic birds, a natural reservoir of avian influenza viruses (AIVs), transmit AIVs to poultry farms, causing huge economic losses. Therefore, the prevalence and genetic characteristics of AIVs isolated from wild birds in South Korea from October 2019 to March 2020 were investigated and analyzed. Fresh avian fecal samples (3256) were collected by active monitoring of 11 wild bird habitats. Twenty-eight AIVs were isolated. Seven HA and eight NA subtypes were identified. All AIV hosts were Anseriformes species. The HA cleavage site of 20 representative AIVs was encoded by non-multi-basic amino acid sequences. Phylogenetic analysis of the eight segment genes of the AIVs showed that most genes clustered within the Eurasian lineage. However, the HA gene of H10 viruses and NS gene of four viruses clustered within the American lineage, indicating intercontinental reassortment of AIVs. Representative viruses likely to infect mammals were selected and evaluated for pathogenicity in mice. JB21-58 (H5N3), JB42-93 (H9N2), and JB32-81 (H11N2) were isolated from the lungs, but JB31-69 (H11N9) was not isolated from the lungs until the end of the experiment at 14 dpi. None of infected mice showed clinical sign and histopathological change in the lung. In addition, viral antigens were not detected in lungs of all mice at 14 dpi. These data suggest that LPAIVs derived from wild birds are unlikely to be transmitted to mammals. However, because LPAIVs can reportedly infect mammals, including humans, continuous surveillance and monitoring of AIVs are necessary, despite their low pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document