scholarly journals Effects of cafeteria diet feeding on β3-adrenoceptor expression and lipolytic activity in white adipose tissue of male and female rats

2000 ◽  
Vol 24 (11) ◽  
pp. 1396-1404 ◽  
Author(s):  
I Lladó ◽  
ME Estrany ◽  
E Rodríguez ◽  
B Amengual ◽  
P Roca ◽  
...  
1980 ◽  
Vol 186 (3) ◽  
pp. 805-815 ◽  
Author(s):  
A Cryer ◽  
H M Jones

(1.) Male and female rats reared in litters of four gained body weight more rapidly than animals reared in litters of 16. The differences were more marked in males than females and became less marked in both sexes with advancing age. (2.) The relative weights of the perigenital, perirenal, subcutaneous and intramuscular white-adipose-tissue sites in the animals from small litters indicated their relative obesity compared with animals from large litters. A sex-related difference in the distribution of adipose tissue between the four sites was seen in animals reared in litters of both four and 16. (3.) Although at 30 days of age all the animals had more numerous and larger fat-cells in their white-adipose-tissue depots than animals reared in large litters, the pattern of change thereafter was both site- and sex-specific. During the post-weaning period (30-300 days), although detailed differences were apparent between sites, a general pattern of increased cell size in males and increased cell numbers in females emerged as being the important determinants responsible for the differences in depot sizes seen when animals from litters of four and 16 were compared. (4.) Lipoprotein lipase activities, expressed as units/g fresh wt. of tissue, in the depots of animals reared in groups of four were unaltered compared with those reared in groups of sixteen during the post-weaning period (47-300 days of age), and enzyme activities expressed per depot merely reflected differences in tissue weights. (5.) Lipoprotein lipase activities per 10(6) cells were higher in males reared in fours compared with those reared in sixteens of equivalent age, but were unaltered for females. (6.) The persistent hyperinsulinaemia of animals reared in litters of four is discussed in relation to the observed differences in enzyme activity and white-adipose-tissue cellularity.


2019 ◽  
Vol 59 (5) ◽  
pp. 2207-2218 ◽  
Author(s):  
T. C. Peixoto ◽  
C. B. Pietrobon ◽  
I. M. Bertasso ◽  
F. A. H. Caramez ◽  
C. Calvino ◽  
...  

1984 ◽  
Vol 246 (3) ◽  
pp. E211-E215 ◽  
Author(s):  
J. E. Foley ◽  
A. Kashiwagi ◽  
H. Chang ◽  
T. P. Huecksteadt ◽  
S. Lillioja ◽  
...  

In an effort to determine whether differences in basal and maximum insulin-stimulated glucose transport by isolated adipocytes are a function of donor sex, we measured glucose transport rates in the absence and presence of 8 nM insulin in adipocytes isolated from the abdominal subcutaneous fat tissue of nine male and ten female subjects with varying degrees of obesity and in adipocytes isolated from the abdominal subcutaneous and retroperitoneal fat tissue of (180-220 g) male and female rats. Because maximal insulin-stimulated glucose transport rate per cell of adipocytes isolated from subcutaneous abdominal tissue of male and female subjects was constant in each sex, the data have been normalized on the basis of transport per cell. The results demonstrated that basal and maximal insulin-stimulated glucose transport per cell was 53-75% higher per cell in the females versus males in adipocytes from human subcutaneous abdominal adipose tissue (P less than 0.01). A similar difference in glucose transport rate between males and females (P less than 0.001) was also found in rat abdominal subcutaneous adipose tissue. Adipocytes isolated from rat retroperitoneal adipose tissue had higher transport rates (approximately three-fold) and smaller sex differences (35% higher in females) than found in adipocytes from rat and human subcutaneous tissue. These results indicate that basal and maximum insulin-stimulated glucose transport is higher by adipocytes isolated from females and that this difference is independent of adipose cell size and species.


Endocrinology ◽  
2015 ◽  
Vol 156 (7) ◽  
pp. 2571-2581 ◽  
Author(s):  
Virginia Mela ◽  
Francisca Díaz ◽  
Ana Belen Lopez-Rodriguez ◽  
María Jesús Vázquez ◽  
Arieh Gertler ◽  
...  

Leptin (Lep) is important in the development of neuroendocrine circuits involved in metabolic control. Because both Lep and metabolism influence pubertal development, we hypothesized that early changes in Lep signaling could also modulate hypothalamic (HT) systems involved in reproduction. We previously demonstrated that a single injection of a Lep antagonist (Antag) on postnatal day (PND)9, coincident with the neonatal Lep peak, induced sexually dimorphic modifications in trophic factors and markers of cell turnover and neuronal maturation in the HT on PND13. Here, our aim was to investigate whether the alterations induced by Lep antagonism persist into puberty. Accordingly, male and female rats were treated with a pegylated super Lep Antag from PND5 to PND9 and killed just before the normal appearance of external signs of puberty (PND33 in females and PND43 in males). There was no effect on body weight, but in males food intake increased, subcutaneous adipose tissue decreased and HT neuropeptide Y and Agouti-related peptide mRNA levels were reduced, with no effect in females. In both sexes, the Antag increased HT mRNA levels of the kisspeptin receptor, G protein-coupled recepter 54 (Gpr54). Expression of the Lep receptor, trophic factors, and glial markers were differently affected in the HT of peripubertal males and females. Lep production in adipose tissue was decreased in Antag-treated rats of both sexes, with production of other cytokines being differentially regulated between sexes. In conclusion, in addition to the long-term effects on metabolism, changes in neonatal Lep levels modifies factors involved in reproduction that could possibly affect sexual maturation.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Ji Hye Chun ◽  
Melissa M Henckel ◽  
Leslie A Knaub ◽  
Lori A Walker ◽  
Jane E Reusch ◽  
...  

Cardiovascular disease (CVD) is a leading cause of hospitalization and death. CVD is characterized by impaired vasoreactivity and mitochondrial dysfunction. Perivascular adipose tissue (PVAT), considered brown adipose tissue (BAT), surrounds the vasculature and regulates its response. Preliminary data with rats housed at either their thermoneutrality (TN, 30°C) or room temperature (RT, 22°C) showed diminished vasodilation in aorta from TN rats as compared with those from RT rats (10.2% ± 4.0% (0.159 g of vasodilation capacity, starting from maximal force constriction of 1.563 g) versus 64.2% ± 5.3% (0.909 g of 1.417 g, p<0.001). TN-housed rat aorta also showed less mitochondrial respiration with lipid substrates in multiple states (p<0.05). We hypothesize that remodeling of PVAT phenotype from BAT to white adipose tissue (WAT) may alter mitochondrial lipid utilization and cause vasoreactivity dysfunction. To test this, we housed male and female rats at either RT or TN and investigated their own PVAT + aorta or PVAT from the oppositely- housed animals along with each rat’s own aorta for vasoreactivity ex situ. There was diminished vasodilation in all TN animals with PVAT + aorta (29.2% ± 3.8% (0.269 g of 0.923 g) versus 37.6% ± 6.0% (0.255 g of 0.677 g), p<0.02), with only male animals showing a significant effect from PVAT (p<0.001). In aorta of TN-housed animals analyzed with PVAT from RT-housed animals, female vessels showed an increase in vasodilation capacity as compared to controls (56.8% ± 13.6% (0.589 g of 1.037 g) versus 5.2% ± 2.3% (0.028 g of 0.534 g), p<0.001), strongly suggesting that PVAT not only regulates vasoreactivity, but can repair TN-induced diminished dilation in a sex-dependent manner. All animals at TN had significantly less mitochondrial respiration with lipid substrates (p<0.05), with no sex differences. We further observed a significantly greater amount of lipids in PVAT from male TN-housed animals as compared to that in RT-housed animals (p<0.05), consistent with a WAT phenotype. Our data support that TN alters PVAT phenotype in a sex-dependent manner, resulting in dysfunctional vasoreactivity and mitochondrial function. These targets of CVD in both male and female animals are exciting avenues for novel therapeutics.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2406
Author(s):  
Chantal R. Ryan ◽  
Michael S. Finch ◽  
Tyler C. Dunham ◽  
Jensen E. Murphy ◽  
Brian D. Roy ◽  
...  

White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mehmet Bilgehan Pektas ◽  
Halit Bugra Koca ◽  
Gokhan Sadi ◽  
Fatma Akar

The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling includingIR,IRS-1,IRS-2,Akt,PI3K,eNOS,mTOR, andPPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well asiNOS,Nrf2, andPI3KmRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes.


1961 ◽  
Vol 38 (1) ◽  
pp. 50-58 ◽  
Author(s):  
N. E. Borglin ◽  
L. Bjersing

ABSTRACT Oestriol (oestra-1,3,5(10)-triene-3,16α,17β-triol) is a weakly oestrogenic substance which, however, in contrast to what was formerly believed, is of physiological significance. Its effect is localized largely to the uterine cervix and vagina. Clinical experience argues both for and against an effect on the pituitary gland. This investigation is concerned with the morphological changes in the pituitary gland and adrenal cortex of gonadectomized male and female rats after the injection of oestriol. It was found that oestriol has the same type of action on these glands as other oestrogens, but under the experimental conditions used, this effect proved much weaker than that produced by oestradiol (oestra-1,3,5(10)-triene-3,17β-diol).


Sign in / Sign up

Export Citation Format

Share Document