scholarly journals Fully automated large-scale assessment of visceral and subcutaneous abdominal adipose tissue by magnetic resonance imaging

2006 ◽  
Vol 30 (5) ◽  
pp. 844-852 ◽  
Author(s):  
T-H Liou ◽  
W P Chan ◽  
L-C Pan ◽  
P-W Lin ◽  
P Chou ◽  
...  
Obesity ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 277-283
Author(s):  
Oliver Chaudry ◽  
Alexandra Grimm ◽  
Andreas Friedberger ◽  
Wolfgang Kemmler ◽  
Michael Uder ◽  
...  

2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


1999 ◽  
Vol 96 (6) ◽  
pp. 647-657 ◽  
Author(s):  
N. J. FULLER ◽  
C. R. HARDINGHAM ◽  
M. GRAVES ◽  
N. SCREATON ◽  
A. K. DIXON ◽  
...  

Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m2 and 25.1 (5.4) kg/m2 respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and 10-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias: thigh, -12%; calf, 5%) and adipose tissue (bias: thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20–77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.


Sign in / Sign up

Export Citation Format

Share Document