scholarly journals Activation of NF-κB signaling in rare earth neodymium oxide particle-induced acute lung injury

2015 ◽  
Vol 4 (6) ◽  
pp. 1587-1596 ◽  
Author(s):  
Suhua Wang ◽  
Yanrong Gao ◽  
Lihua Huang ◽  
Shanshan Zheng ◽  
Chunxia Wang ◽  
...  

The activation mechanism of the NF-κB signaling pathway in Nd2O3exposure-induced acute lung inflammation and pneumoconiosis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunguang Yan ◽  
Jing Chen ◽  
Yue Ding ◽  
Zetian Zhou ◽  
Bingyu Li ◽  
...  

BackgroundThe ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays crucial roles in diverse biological processes including cellular metabolism, differentiation, development, and immune response. However, during IgG immune complex (IgG-IC)-induced acute lung inflammation, its expression and function in the pulmonary tissue remains unknown.ObjectivesThe study is designed to determine the effect of PPARγ on IgG-IC-triggered acute lung inflammation, and the underlying mechanisms, which might provide theoretical basis for therapy of acute lung inflammation.SettingDepartment of Pathogenic Biology and Immunology, Medical School of Southeast UniversitySubjectsMice with down-regulated/up-regulated PPARγ activity or down-regulation of Early growth response protein 1 (Egr-1) expression, and the corresponding controls.InterventionsAcute lung inflammation is induced in the mice by airway deposition of IgG-IC. Activation of PPARγ is achieved by using its agonist Rosiglitazone or adenoviral vectors that could mediate overexpression of PPARγ. PPARγ activity is suppressed by application of its antagonist GW9662 or shRNA. Egr-1 expression is down-regulated by using the gene specific shRNA.Measures and Main ResultsWe find that during IgG-IC-induced acute lung inflammation, PPARγ expression at both RNA and protein levels is repressed, which is consistent with the results obtained from macrophages treated with IgG-IC. Furthermore, both in vivo and in vitro data show that PPARγ activation reduces IgG-IC-mediated pro-inflammatory mediators’ production, thereby alleviating lung injury. In terms of mechanism, we observe that the generation of Egr-1 elicited by IgG-IC is inhibited by PPARγ. As an important transcription factor, Egr-1 transcription is substantially increased by IgG-IC in both in vivo and in vitro studies, leading to augmented protein expression, thus amplifying IgG-IC-triggered expressions of inflammatory factors via association with their promoters.ConclusionDuring IgG-IC-stimulated acute lung inflammation, PPARγ activation can relieve the inflammatory response by suppressing the expression of its downstream target Egr-1 that directly binds to the promoter regions of several inflammation-associated genes. Therefore, regulation of PPARγ-Egr-1-pro-inflammatory mediators axis by PPARγ agonist Rosiglitazone may represent a novel strategy for blockade of acute lung injury.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Guo ◽  
Min Li ◽  
Yi Yang ◽  
Lin Zhang ◽  
Li-wei Zhang ◽  
...  

Abstract Background The complement system plays a critical role as the pathogenic factor in the models of acute lung injury due to various causes. Cobra venom factor (CVF) is a commonly used complement research tool. The CVF can cause acute inflammation in the lung by producing complement activation components. Atorvastatin (ATR) is a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor approved for control of plasma cholesterol levels. This inhibitor can reduce the acute pulmonary inflammatory response. However, the ability of ATR in treating acute lung inflammation caused by complement activation is still unknown. Therefore, we investigated the effect of ATR on lung inflammation in mice induced by activation of the complement alternative pathway in this study. Methods ATR (10 mg/kg/day via oral gavage) was administered for 7 days before tail vein injection of CVF (25 μg/kg). On the seventh day, all mice were sacrificed 1 h after injection. The lung lobe, bronchoalveolar lavage fluid (BALF), and blood samples were collected. The myeloperoxidase (MPO) activity of the lung homogenate, the leukocyte cell count, and the protein content of BALF were measured. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), P-selectin, and Intercellular cell adhesion molecule-1 (ICAM-1) in BALF and serum were determined by enzyme-linked immunosorbent assay. The pathological change of the lung tissue was observed by hematoxylin and eosin staining. The deposition of C5b-9 in the lung tissue was detected by immunohistochemistry. The phosphorylation of NF-κB p65 in the lung tissues was examined by immunohistochemistry and western blotting. Results The lung inflammation levels were determined by measuring the leukocyte cell numbers and protein content of BALF, the lung MPO activity, and expression and staining of the inflammatory mediators (IL-6 and TNF-α), and adhesion molecules (P-selectin and ICAM-1) for lung lesion. A significant reduction in the lung inflammation levels was observed after 7 days in ATR pre-treated mice with a CVF-induced lung disease. Deposition of C5b-9 was significantly alleviated by ATR pretreatment. Early intervention with ATR significantly reduced the development of acute lung inflammation on the basis of phosphorylation of NF-κB p65 in the lung. Conclusion These findings suggest the identification of ATR treatment for the lung inflammation induced by activating the complement system on the basis of its anti-inflammatory response. Together with the model replicating the complement activating characteristics of acute lung injury, the results may be translatable to the overactivated complement relevant diseases.


2019 ◽  
Vol 127 (3) ◽  
pp. 668-678 ◽  
Author(s):  
Alexandre Gaudet ◽  
Lucie Portier ◽  
Méline Prin ◽  
Marie-Christine Copin ◽  
Anne Tsicopoulos ◽  
...  

Acute respiratory distress syndrome is a severe form of respiratory failure, occurring in up to 20% of patients admitted to the intensive care unit with sepsis. Dysregulated leukocyte diapedesis is a major contributor to acute respiratory distress syndrome. Endocan is a circulating proteoglycan that binds to the leukocyte integrin leukocyte functional antigen-1 and blocks its interaction with its endothelial ligand, ICAM-1. The objective of this study was to evaluate the role of endocan in the control of acute lung inflammation. In vitro, endocan inhibited human leukocyte transendothelial migration as well as ICAM-1-dependent migration but had a very mild effect on ICAM-1-dependent adhesion. Endocan also acted as an inhibitor of transendothelial migration of mouse leukocytes. The effect of systemic administration of recombinant human endocan was assessed in a model of acute lung inflammation in BALB/c mice. Treatment with endocan 1 h after intratracheal LPS challenge reduced the alveolar inflammatory response, diminished histological features of acute lung injury, and improved respiratory function. These results highlight the anti-inflammatory role of human endocan and its protective effect against acute lung injury. NEW & NOTEWORTHY We show here that endocan inhibits ICAM-1-dependent human leukocyte transendothelial migration and ICAM-1-dependent adhesion. We also found that in BALB/c mice with tracheal LPS-induced acute lung injury treatment with recombinant human endocan reduces lung inflammation, notably through reduction of neutrophilic recruitment, and restores normal lung function. These results confirm the hypothesis that human endocan may have a protective effect against acute lung inflammation.


2010 ◽  
Vol 298 (6) ◽  
pp. L830-L836 ◽  
Author(s):  
Gary W. Hoyle ◽  
Christine I. Hoyle ◽  
Jing Chen ◽  
Weiyuan Chang ◽  
Ronald W. Williams ◽  
...  

Inflammation is associated with various pulmonary diseases and contributes to the pathogenesis of acute lung injury. We previously identified a proinflammatory signaling pathway triggered by G protein-coupled receptors (GPCRs) in which stimulation of Gq-coupled GPCRs results in activation of the transcription factor NF-κB. Because damage to the lung causes the release of multiple mediators acting through Gq-coupled GPCRs, this signaling pathway is likely to contribute to inflammatory processes in the injured lung. In an effort to identify novel inhibitors of lung inflammation, the National Institutes of Health Clinical Collection, a library of 446 compounds, was screened for inhibitory activity toward production of IL-8 induced by stimulation of the Gq-coupled tachykinin 1 receptor with substance P in A549 cells. Twenty-eight compounds that significantly inhibited substance P-induced IL-8 production were identified. The most potent inhibitor was triptolide, a diterpenoid compound from Tripterygium wilfordii Hook F, a vine used in traditional Chinese medicine for the treatment of autoimmune diseases. Triptolide inhibited IL-8 production induced by substance P with an IC50 of 2.3 × 10−8 M and inhibited NF-κB activation in response to an agonist of the protease-activated receptor 2 with an IC50 of 1.4 × 10−8 M. Anti-inflammatory effects of triptolide were assessed in vivo using a chlorine gas lung injury model in mice. Triptolide inhibited neutrophilic inflammation and the production of KC (Cxcl1) in the lungs of chlorine-exposed mice. The results demonstrate that triptolide exhibits anti-inflammatory activity in cultured lung cells and in an in vivo model of acute lung injury.


2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mian Wang ◽  
Hua Zhong ◽  
Xian Zhang ◽  
Xin Huang ◽  
Jing Wang ◽  
...  

AbstractAcute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.


2012 ◽  
Vol 117 (6) ◽  
pp. 1322-1334 ◽  
Author(s):  
Aline M. Ambrosio ◽  
Rubin Luo ◽  
Denise T. Fantoni ◽  
Claudia Gutierres ◽  
Qin Lu ◽  
...  

Background In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.


2018 ◽  
Vol 233 (9) ◽  
pp. 6615-6631 ◽  
Author(s):  
Wang Xie ◽  
Qingchun Lu ◽  
Kailing Wang ◽  
Jingjing Lu ◽  
Xia Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document