scholarly journals Distribution of dopant ions around poly(3,4-ethylenedioxythiophene) chains: a theoretical study

2017 ◽  
Vol 19 (15) ◽  
pp. 9889-9899 ◽  
Author(s):  
Jordi Casanovas ◽  
David Zanuy ◽  
Carlos Alemán

The effect of counterions and multiple polymer chains on the properties and structure of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with ClO4− has been examined using density functional theory (DFT) calculations with periodic boundary conditions (PBCs).

RSC Advances ◽  
2015 ◽  
Vol 5 (48) ◽  
pp. 38680-38689 ◽  
Author(s):  
Yongliang Yong ◽  
Xiping Hao ◽  
Chao Li ◽  
Xiaohong Li ◽  
Tongwei Li ◽  
...  

The structural and electronic properties of small Sin clusters (n = 1–6, 10) adsorbed on graphene are studied by use of density functional theory within periodic boundary conditions.


2012 ◽  
Vol 463-464 ◽  
pp. 1488-1492 ◽  
Author(s):  
Yan Li Wang ◽  
Ke He Su ◽  
Jun Ping Zhang

The B, N, S, Si and P atoms doped single walled (5, 5) carbon nanotubes were studied by density functional theory B3LYP/3-21G (d) with the periodic boundary conditions. The ultra long tube models were calculated and the structures, energies and the band structures were obtained. The N, Si and S doped nanotubes have narrow energy gap with metal conductivity whereas B and P doped nanotubes have overlapped energy gaps with or semi-metal conductivity.


2016 ◽  
Vol 18 (42) ◽  
pp. 29249-29257 ◽  
Author(s):  
Chengqian Yuan ◽  
Haiming Wu ◽  
Meiye Jia ◽  
Peifeng Su ◽  
Zhixun Luo ◽  
...  

Utilizing dispersion-corrected density functional theory (DFT) calculations, we demonstrate the weak intermolecular interactions of phenylenediamine dimer (pdd) clusters, emphasizing the local lowest energy structures and decomposition of interaction energies by natural bond orbital (NBO) and atoms in molecule (AIM) analyses.


2016 ◽  
Vol 94 (12) ◽  
pp. 1028-1037 ◽  
Author(s):  
Zhe Li ◽  
Miaoren Xia ◽  
Russell J. Boyd

The mechanism of the iridium-catalyzed functionalization of a primary C–H bond at the γ position of an alcohol 5 is investigated by density functional theory (DFT) calculations. A new IrIII–IrV mechanism is found to be more feasible than the previously reported IrI–IrIII mechanism. 10 In the IrIII–IrV mechanism, the reaction begins with the initial formation of (Me4phen)IrIII(H)[Si(OR)Et2]2 from the catalyst precursor, [Ir(cod)OMe]2 (cod = 1,5-cyclooctadiene). The catalytic cycle includes five steps: (1) the insertion of norbornene into the Ir–H bond to produce (Me4phen)IrIII(norbornyl)[Si(OR)Et2]2 (R = –CH(C2H5)C3H7); (2) the Si–H oxidative addition of HSi(OR)Et2 to form (Me4phen)IrVH(norbornyl)[Si(OR)Et2]3; (3) the reductive elimination of norbornane to furnish (Me4phen)IrIII[Si(OR)Et2]3; (4) the intramolecular C–H activation of the primary C–H bond at the γ position; and (5) the Si–C reductive elimination to produce the final product and regenerate the catalyst. The highest barrier in the IrIII–IrV mechanism is 7.3 kcal/mol lower than that of the IrI–IrIII mechanism. In addition, the regioselectivity of the C–H activation predicted by this new IrIII–IrV mechanism is consistent with experimental observation.


2015 ◽  
Vol 5 (9) ◽  
pp. 4547-4555 ◽  
Author(s):  
Pavlo Kostetskyy ◽  
Giannis Mpourmpakis

Olefin formation pathways on Lewis acid (LA) sites of Al2O3, Ga2O3 and In2O3 and gallium- and indium-doped alumina were investigated using Density Functional Theory (DFT) calculations.


Sign in / Sign up

Export Citation Format

Share Document