A novel assessment of the role of the methyl radical and water formation channel in the CH3OH + H reaction

2017 ◽  
Vol 19 (36) ◽  
pp. 24467-24477 ◽  
Author(s):  
Flávio O. Sanches-Neto ◽  
Nayara D. Coutinho ◽  
Valter H. Carvalho-Silva

A number of experimental and theoretical papers accounted almost exclusively for two channels in the reaction of atomic hydrogen with methanol. However, several astrochemical studies claimed the importance of another channel for this reaction.

2007 ◽  
Vol 43 (2) ◽  
pp. 125-131 ◽  
Author(s):  
V. A. Bunev ◽  
V. N. Panfilov ◽  
V. S. Babkin

2008 ◽  
Vol 38 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Ivana Cerovečki ◽  
John Marshall

Abstract Eddy modulation of the air–sea interaction and convection that occurs in the process of mode water formation is analyzed in simulations of a baroclinically unstable wind- and buoyancy-driven jet. The watermass transformation analysis of Walin is used to estimate the formation rate of mode water and to characterize the role of eddies in that process. It is found that diabatic eddy heat flux divergences in the mixed layer are comparable in magnitude, but of opposite sign, to the surface air–sea heat flux and largely cancel the direct effect of buoyancy loss to the atmosphere. The calculations suggest that mode water formation estimates based on climatological air–sea heat flux data and outcrops, which do not fully resolve ocean eddies, may neglect a large opposing term in the heat budget and are thus likely to significantly overestimate true formation rates. In Walin’s watermass transformation framework, this manifests itself as a sensitivity of formation rate estimates to the averaging period over which the outcrops and air–sea fluxes are subjected. The key processes are described in terms of a transformed Eulerian-mean formalism in which eddy-induced mean flow tends to cancel the Eulerian-mean flow, resulting in weaker residual mean flow, subduction, and mode water formation rates.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1353-1365
Author(s):  
Tillys Petit ◽  
M. Susan Lozier ◽  
Simon A. Josey ◽  
Stuart A. Cunningham

Abstract. Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air–sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air–sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin.


2021 ◽  
Author(s):  
Sourav Chatterjee ◽  
Roshin P Raj ◽  
Laurent Bertino ◽  
Nuncio Murukesh

<p>Enhanced intrusion of warm and saline Atlantic Water (AW) to the Arctic Ocean (AO) in recent years has drawn wide interest of the scientific community owing to its potential role in ‘Arctic Amplification’. Not only the AW has warmed over the last few decades , but its transfer efficiency have also undergone significant modifications due to changes in atmosphere and ocean dynamics at regional to large scales. The Nordic Seas (NS), in this regard, play a vital role as the major exchange of polar and sub-polar waters takes place in this region. Further, the AW and its significant modification on its way to AO via the Nordic Seas has large scale implications on e.g., deep water formation, air-sea heat fluxes. Previous studies have suggested that a change in the sub-polar gyre dynamics in the North Atlantic controls the AW anomalies that enter the NS and eventually end up in the AO. However, the role of NS dynamics in resulting in the modifications of these AW anomalies are not well studied. Here in this study, we show that the Nordic Seas are not only a passive conduit of AW anomalies but the ocean circulations in the Nordic Seas, particularly the Greenland Sea Gyre (GSG) circulation can significantly change the AW characteristics between the entry and exit point of AW in the NS. Further, it is shown that the change in GSG circulation can modify the AW heat distribution in the Nordic Seas and can potentially influence the sea ice concentration therein. Projected enhanced atmospheric forcing in the NS in a warming Arctic scenario and the warming trend of the AW can amplify the role of NS circulation in AW propagation and its impact on sea ice, freshwater budget and deep water formation.</p>


1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


1991 ◽  
Vol 147 ◽  
pp. 37-40
Author(s):  
G. Joncas

The presence of HI in the interstellar medium is ubiquitous. HI is the principal actor in the majority of the physical processes at work in our Galaxy. Restricting ourselves to the topics of this symposium, atomic hydrogen is involved with the formation of molecular clouds and is one of the byproducts of their destruction by young stars. HI has different roles during a molecular cloud's life. I will discuss here a case of coexisting HI and H2 at large scale and the origin of HI in star forming regions. For completeness' sake, it should be mentionned that there are at least three other aspects of HI involvement: HI envelopes around molecular clouds, the impact of SNRs (see work on IC 443), and the role of HI in quiescent dark clouds (see van der Werf's work).


Sign in / Sign up

Export Citation Format

Share Document