High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18535-18545 ◽  
Author(s):  
Fan-Li Meng ◽  
Jiao-Jiao Wu ◽  
Er-Fei Zhao ◽  
Yan-Zhen Zheng ◽  
Mei-Lan Huang ◽  
...  

In situ embedding of upconversion nanocrystals in perovskite flm is developed and lead to a high PCE with enabled NIR response for planar solar cell.

Author(s):  
F. Bonnín-Ripoll ◽  
Ya. B. Martynov ◽  
R. G. Nazmitdinov ◽  
G. Cardona ◽  
R. Pujol-Nadal

A thorough optical + electrical + Lambertian scattering analysis determines the optimal thickness of a perovskite thin-film solar cell revealing its high efficiency with inorganic HTMs.


2020 ◽  
Vol 13 (11) ◽  
pp. 4344-4352
Author(s):  
Ning Yang ◽  
Cheng Zhu ◽  
Yihua Chen ◽  
Huachao Zai ◽  
Chenyue Wang ◽  
...  

An in situ cross-linked 1D/3D perovskite heterostructure achieved a perovskite solar cell with a 21.19% PCE and operational stability over 3000 hours.


2020 ◽  
Author(s):  
Miao Yu ◽  
Haoxuan Sun ◽  
Xiaona Huang ◽  
Yichao Yan ◽  
Wanli Zhang

Abstract Recently, reported perovskite solar cells (PSCs) with high power conversion efficiency (PCE) are mostly based on mesoporous structures containing mesoporous titanium oxide (TiO 2 ) which is the main factor to reduce the overall hysteresis. However, existing fabrication approaches for mesoporous TiO 2 generally require a high temperature (>450 °C) annealing process. Moreover, there is still plenty of scope for improvement in terms of increasing the electron conductivity and reducing the carrier recombination. Herein, a facile one-step, in situ and low-temperature method was developed to prepare an Nb:TiO 2 compact-mesoporous layer to serve as both a scaffold and an electron transport layer (ETL) in PSCs. The Nb:TiO 2 compact-mesoporous layer based PSCs exhibit suppressed hysteresis, which is attributed to the synergistic effect of the large interface surface area caused by nano-pin morphology on the surface and the improved carrier transportation caused by the presence of Nb. Such a high-quality compact-mesoporous layer allows the PSC achieve a remarkable PCE of 19.74%. This work promises an effective approach for creating hysteresis-less and high-efficiency PSCs based on compact-mesoporous structures with lower energy consumption and cost.


Solar RRL ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 1900467 ◽  
Author(s):  
Tingming Jiang ◽  
Zeng Chen ◽  
Xu Chen ◽  
Tianyu Liu ◽  
Xinya Chen ◽  
...  

2016 ◽  
Vol 9 (7) ◽  
pp. 2326-2333 ◽  
Author(s):  
Guan-Woo Kim ◽  
Gyeongho Kang ◽  
Jinseck Kim ◽  
Gang-Young Lee ◽  
Hong Il Kim ◽  
...  

A dopant–free polymeric hole transport material (HTM), RCP, based on benzo[1,2-b:4,5:b′]dithiophene and 2,1,3-benzothiadiazole exhibited a high efficiency of 17.3% in a perovskite solar cell and maintained its initial efficiency for over 1400 hours.


2015 ◽  
Vol 3 (48) ◽  
pp. 24495-24503 ◽  
Author(s):  
Xingtian Yin ◽  
Meidan Que ◽  
Yonglei Xing ◽  
Wenxiu Que

A solution-derived NiOxfilm was successfully employed to work as the hole selective contact for a high efficiency inverted planar heterojunction perovskite solar cell with negligible hysteresis.


2015 ◽  
Vol 3 (28) ◽  
pp. 14902-14909 ◽  
Author(s):  
Ying Liu ◽  
Shulin Ji ◽  
Shuxin Li ◽  
Weiwei He ◽  
Ke Wang ◽  
...  

Perovskite solar cells have been widely investigated owing to their high efficiency and low production cost.


2021 ◽  
pp. 2003359
Author(s):  
Patrick Wai‐Keung Fong ◽  
Hanlin Hu ◽  
Zhiwei Ren ◽  
Kuan Liu ◽  
Li Cui ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (16) ◽  
pp. 8694-8698 ◽  
Author(s):  
Ke Gu ◽  
Dongqi Zheng ◽  
Lijie Li ◽  
Yan Zhang

Enhancing the performance of perovskite solar cells with strain based on a piezo-phototronic effect.


Sign in / Sign up

Export Citation Format

Share Document