scholarly journals Improving the homogeneity of sugarcane bagasse kraft lignin through sequential solvents

RSC Advances ◽  
2018 ◽  
Vol 8 (74) ◽  
pp. 42269-42279 ◽  
Author(s):  
Zhuan Jia ◽  
Mingfu Li ◽  
Guangcong Wan ◽  
Bin Luo ◽  
Chenyan Guo ◽  
...  

The heterogeneous features of lignin, especially the wide distribution of its molecular weight, limit its high value-added application.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Khaleghipour ◽  
Javier A. Linares-Pastén ◽  
Hamid Rashedi ◽  
Seyed Omid Ranaei Siadat ◽  
Andrius Jasilionis ◽  
...  

AbstractSugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.25, 0.5, or 1 M), 121 °C (1 bar), 30 and 60 min; (2) 3 × repeated extraction cycles in NaOH (1 or 2 M), 121 °C (1 bar), 30 and 60 min or (3) pressurized liquid extractions (PLE), 100 bar, at low alkalinity (0–0.1 M NaOH) in the time and temperature range 10–30 min and 50–150 °C. Higher concentration of alkali (2 M NaOH) increased the xylan yield and resulted in higher apparent molecular weight of the xylan polymer (212 kDa using 1 and 2 M NaOH, vs 47 kDa using 0.5 M NaOH), but decreased the substituent sugar content. Repeated extraction at 2 M NaOH, 121 °C, 60 min solubilized both xylan (85.6% of the SCB xylan), and lignin (84.1% of the lignin), and left cellulose of high purity (95.8%) in the residuals. Solubilized xylan was separated from lignin by precipitation, and a polymer with β-1,4-linked xylose backbone substituted by arabinose and glucuronic acids was confirmed by FT-IR and monosaccharide analysis. XOS yield in subsequent hydrolysis by endo-xylanases (from glycoside hydrolase family 10 or 11) was dependent on extraction conditions, and was highest using xylan extracted by 0.5 M NaOH, (42.3%, using Xyn10A from Bacillus halodurans), with xylobiose and xylotriose as main products. The present study shows successful separation of SCB xylan, lignin, and cellulose. High concentration of alkali, resulted in xylan with lower degree of substitution (especially reduced arabinosylation), while high pressure (using PLE), released more lignin than xylan. Enzymatic hydrolysis was more efficient using xylan extracted at lower alkaline strength and less efficient using xylan obtained by PLE and 2 M NaOH, which may be a consequence of polymer aggregation, via remaining lignin interactions.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2887
Author(s):  
Kena Li ◽  
Jens Prothmann ◽  
Margareta Sandahl ◽  
Sara Blomberg ◽  
Charlotta Turner ◽  
...  

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170–210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.


2021 ◽  
Author(s):  
Carlos Alejandro Rodríguez-Ramírez ◽  
Alain Dufresne ◽  
Norma Beatriz D'Accorso ◽  
Nancy Garcia

Abstract In this work, from an endemic and non-significant value-added bamboo argentine, nanofibrils (CNFs) of 20 nm in width were obtained. These nanofibrils were chemical modified in surface with three simple steps using a noncommercial low molecular weight polylactic acid. The success of modification was confirmed by FTIR, TGA, DSC and XRD analysis. The modified nanofibrils were taken up for changing surface properties in films based on commercial PLA. The results show that dispersive (γ D/S) component of films increase of 34.7 mN/m to 36.1 mN/m after the addition of modified nanofibrils from 2 to 5% in formulation of the films, comparing with a physical blend. Interesting others result in physical, mechanical, and thermal properties of the nanocomposites, were reported.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
P. Saravana Pandian ◽  
S. Sindhanai Selvan ◽  
A. Subathira ◽  
S. Saravanan

Abstract Waste generated from industrial processing of seafood is an enormous source of commercially valuable proteins. One among the underutilized seafood waste is shrimp waste, which primarily consists of head and carapace. Litopenaeus vannamei (L. vannamei) is the widely cultivated shrimp in Asia and contributes to 90 % of aggregate shrimp production in the world. This work was focused on extraction as well as purification of value-added proteins from L. vannamei waste in a single step aqueous two phase system (ATPS). Polyethylene glycol (PEG) and trisodium citrate system were chosen for the ATPS owing to their adequate partitioning and less toxic nature. Response surface methodology (RSM) was implemented for the optimization of independent process variables such as PEG molecular weight (2000 to 6000), pH (6 to 8) and temperature (25 to 45 °C). The results obtained from RSM were further validated using a Multi-objective genetic algorithm (MGA). At the optimized condition of PEG molecular weight 2000, pH 8 and temperature 35 °C, maximum partition coefficient and protein yield were found to be 2.79 and 92.37 %, respectively. Thus, L. vannamei waste was proved to be rich in proteins, which could be processed industrially through cost-effective non-polluting ATPS extraction, and RSM coupled MGA could be a potential tool for such process optimization.


1977 ◽  
Vol 23 (4) ◽  
pp. 434-440 ◽  
Author(s):  
Don L. Crawford ◽  
Suellen Floyd ◽  
Anthony L. Pometto III ◽  
Ronald L. Crawford

The comparative rates of microbial degradation 14C-lignin-labeled lignocelluloses and 14C-Kraft lignins were investigated using selected soil and water samples as sources of microorganisms. Natural lignocelluloses containing 14C primarily in their lignin components were prepared by feeding plants uniformly labeled L-[14C]phenylalanine through their cut stems. 14C-Kraft lignins were prepared by pulping lignin-labeled lignocelluloses. Rates of lignin biodegradation were determined by monitoring 14CO2 evolution from incubation mixtures over incubation periods of up to 1000 h. Observed rates of lignin degradation were slow in all cases. Kraft lignins appeared more resistant to microbial attack than natural lignins, even though they were decomposed more rapidly during the first 100–200 h of incubation. Similar degradation patterns were observed in both soil and water. Individual samples, however, varied greatly in their overall rates of degradation of either lignin type. A Kraft-lignin preparation was separated into a variety of molecular weight fractions by column chromatography on LH-20 Sephadex and the biodegradability of the different molecular weight fractions determined. The lower molecular weight fractions of the Kraft lignin were decomposed at a significantly faster rate by the microflora of soil than were the fractions of higher molecular weight.


2021 ◽  
Vol 9 (2) ◽  
pp. 24-30

Streptokinase is a fibrinolytic enzyme and a product of β-hemolytic Streptococci strains. This enzyme is used as a medication to break down clots in some cases of heart disease. Streptococcus equisimilis, a species of group C Streptococci, is widely used for the production of streptokinase by fermentation technology. In this study, the sugarcane bagasse fermentation medium was optimized for metal ions (KH2PO4, MgSO4.7H2O, CaCO3 and NaHCO3) at various levels to attain the maximal production of streptokinase. Sugarcane bagasse was used due to its profuse availability and as an ideal substrate for microbial processes for the manufacturing of value-added products. The results showed that maximal streptokinase production was found at 0.04% KH2PO4, 0.04% MgSO4.7H2O, 0.15% NaHCO3 and 0.04% CaCO3. Finally, the optimized medium resulted in 84.75 U/mg specific activity and 74.5% recovery. The purification process was carried out simultaneously using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. Finally, a purified sample of streptokinase was run on SDS-PAGE and resolute 47 kDa molecular weight. The use of β-hemolytic Streptococci to obtain streptokinase is not free from health risks and is related to anaphylaxis. This study provides a way forward for the cost-effective ways to obtain streptokinase for the treatment of thrombosis.


2018 ◽  
Vol 112 ◽  
pp. 200-209 ◽  
Author(s):  
Selda Aminzadeh ◽  
Maris Lauberts ◽  
Galina Dobele ◽  
Jevgenija Ponomarenko ◽  
Tuve Mattsson ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 455-470 ◽  
Author(s):  
Omar Y. Abdelaziz ◽  
Kena Li ◽  
Per Tunå ◽  
Christian P. Hulteberg

Sign in / Sign up

Export Citation Format

Share Document