Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signal

2020 ◽  
Vol 7 (12) ◽  
pp. 3305-3315
Author(s):  
Run Wang ◽  
Yanan Shen ◽  
Dong Qian ◽  
Jinkun Sun ◽  
Xiang Zhou ◽  
...  

Artificial muscles are developed by using twisted natural rubber fiber coated with buckled carbon nanotube sheet, which show tensile and torsional actuations and sensing function via the resistance change by a single electric signal.

2020 ◽  
Vol 9 (1) ◽  
pp. 478-488 ◽  
Author(s):  
Yun-Fei Zhang ◽  
Fei-Peng Du ◽  
Ling Chen ◽  
Ka-Wai Yeung ◽  
Yuqing Dong ◽  
...  

AbstractElectroactive hydrogels have received increasing attention due to the possibility of being used in biomimetics, such as for soft robotics and artificial muscles. However, the applications are hindered by the poor mechanical properties and slow response time. To address these issues, in this study, supramolecular ionic polymer–carbon nanotube (SIPC) composite hydrogels were fabricated via in situ free radical polymerization. The polymer matrix consisted of carbon nanotubes (CNTs), styrene sulfonic sodium (SSNa), β-cyclodextrin (β-CD)-grafted acrylamide, and ferrocene (Fc)-grafted acrylamide, with the incorporation of SSNa serving as the ionic source. On applying an external voltage, the ions accumulate on one side of the matrix, leading to localized swelling and bending of the structure. Therefore, a controllable and reversible actuation can be achieved by changing the applied voltage. The tensile strength of the SIPC was improved by over 300%, from 12 to 49 kPa, due to the reinforcement effect of the CNTs and the supramolecular host–guest interactions between the β-CD and Fc moieties. The inclusion of CNTs not only improved the tensile properties but also enhanced the ion mobility, which lead to a faster electromechanical response. The presented electro-responsive composite hydrogel shows a high potential for the development of robotic devices and soft smart components for sensing and actuating applications.


2021 ◽  
Vol 2 (7) ◽  
pp. 2408-2418
Author(s):  
Le Wan ◽  
Cong Deng ◽  
Ze-Yong Zhao ◽  
Hai-Bo Zhao ◽  
Yu-Zhong Wang

Titanium oxide-carbon nanotube hybrids may efficiently promote the stability of nature rubber under extreme frictional conditions.


Soft Matter ◽  
2021 ◽  
Author(s):  
Vincent Mansard

The physics of soft matter can contribute to the revolution in robotics and medical prostheses.These two fields requires the development of artificial muscles with behavior close to the biologicalmuscle. Today,...


2018 ◽  
Vol 934 ◽  
pp. 43-49
Author(s):  
Poramin Boonprasert ◽  
Nuchnapa Tangboriboon

Natural rubber composite materials were prepared by using sulfur curing system of STR 5L added with hen eggshell and eggshell membrane to increase electrical and mechanical properties for biomimetic actuator and artificial muscle applications. Samples were vulcanized at temperature 150°C. Hen eggshells and eggshell membrane powder (0, 20, 40, and 60 phr) were added into natural rubber. The main composition of hen eggshells composed of 96.35 wt% calcium carbonate (CaCO3) while mostly composition of hen eggshell membrane is fibrous protein in terms of collagen. The best condition is addition of eggshell 40 phr (formula 3) and eggshell membrane 20 phr (formula 5) to obtain the highest storage modulus response equal to 2.85 x 106 and 2.97 x106 Pa, respectively. The curing time (Tc90) of pure natural rubber (formula 1), formula 3, and formula 5 are 8.22, 6.73, and 5.67 min, respectively. Furthermore, the curing time, rheology, and electrical field response of natural rubber composite materials were measured by moving die rheometer and impedance analyzer, and reported here.


2017 ◽  
Vol 11 (3) ◽  
pp. 230-242 ◽  
Author(s):  
H. H. Le ◽  
S. Hait ◽  
A. Das ◽  
S. Wiessner ◽  
K. W. Stoeckelhuber ◽  
...  

2011 ◽  
Vol 5 (4) ◽  
pp. 544-550 ◽  
Author(s):  
Hiroki Tomori ◽  
◽  
Taro Nakamura

Robots have entered human life, and closer relationships are being formed between humans and robots. It is desirable that these robots be flexible and lightweight. With this as our goal, we have developed an artificial muscle actuator using straight-fiber-type artificial muscles derived from the McKibben-type muscles, which have excellent contraction rate and force characteristics. In this study, we compared the steady state and dynamic characteristic of straightfiber-type and McKibben-type muscles and verified the usefulness of straight-fiber-type muscles.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Pedro B. C. Leal ◽  
Marcela Cabral-Seanez ◽  
Vikram B. Baliga ◽  
Douglas L. Altshuler ◽  
Darren J. Hartl

Skeletal muscle provides a compact solution for performing multiple tasks under diverse operational conditions, a capability lacking in many current engineered systems. Here, we evaluate if shape memory alloy (SMA) components can serve as artificial muscles with tunable mechanical performance. We experimentally impose cyclic stimuli, electric and mechanical, to an SMA wire and demonstrate that this material can mimic the response of the avian humerotriceps, a skeletal muscle that acts in the dynamic control of wing shapes. We next numerically evaluate the feasibility of using SMA springs as artificial leg muscles for a bipedal walking robot. Altering the phase offset between mechanical and electrical stimuli was sufficient for both synthetic and natural muscle to shift between actuation, braking and spring-like behaviour.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 8180-8186 ◽  
Author(s):  
Kaiyun Jin ◽  
Silan Zhang ◽  
Susheng Zhou ◽  
Jian Qiao ◽  
Yanhui Song ◽  
...  

A self-plied, twist-stable carbon nanotube yarn muscle was demonstrated, which provided decoupled actuations of large tensile strokes against heavy load but zero torsional stroke.


Sign in / Sign up

Export Citation Format

Share Document