Enhanced thermomechanical property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer

2020 ◽  
Vol 11 (22) ◽  
pp. 3701-3708
Author(s):  
Hyang Moo Lee ◽  
Suguna Perumal ◽  
Gi Young Kim ◽  
Jin Chul Kim ◽  
Young-Ryul Kim ◽  
...  

Introduction of a self-healable block copolymer increases the mechanical property whilst maintaining self-healing efficiency.

2020 ◽  
Vol 11 (22) ◽  
pp. 3775-3775
Author(s):  
Hyang Moo Lee ◽  
Suguna Perumal ◽  
Gi Young Kim ◽  
Jin Chul Kim ◽  
Young-Ryul Kim ◽  
...  

Correction for ‘Enhanced thermomechanical property of a self-healing polymer via self-assembly of a reversibly cross-linkable block copolymer’ by Hyang Moo Lee et al., Polym. Chem., 2020, DOI: 10.1039/d0py00310g.


2016 ◽  
Vol 7 (47) ◽  
pp. 7278-7286 ◽  
Author(s):  
Jian Zhao ◽  
Rui Xu ◽  
Gaoxing Luo ◽  
Jun Wu ◽  
Hesheng Xia

The poly(siloxane-urethane) elastomers with microphase separation structure and Diels–Alder bonds show high healing efficiency, good mechanical property and good biocompatibility.


Macromol ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 18-36
Author(s):  
Ikhlas Gadwal

Self-healing coatings or materials have received significant importance in paint, coating, and other industries, as well as in academia, because of their capability to extend materials service life, improving protection, and ensuring sustainability. This review article emphasizes significant advances accomplished in the preparation and properties of intrinsic self-healing materials exclusively based on hydrogen bonding interactions, with possible applications in coatings and adhesives. The main topic of discussion in this review article is the preparation, healing conditions, healing efficiency, and mechanical property recovery after healing. The last part of the review discusses the conclusions and outlook of self-healing materials.


2005 ◽  
Vol 42 (3) ◽  
pp. 180-183 ◽  
Author(s):  
S. G. Schulz ◽  
U. Frieske ◽  
H. Kuhn ◽  
G. Schmid ◽  
F. Müller ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


2021 ◽  
Vol 13 (4) ◽  
pp. 5772-5781
Author(s):  
Dong Hyup Kim ◽  
Ahram Suh ◽  
Geonhyeong Park ◽  
Dong Ki Yoon ◽  
So Youn Kim

2021 ◽  
Author(s):  
Yanfen Jiang ◽  
Shuqi Dong ◽  
Guoyang Qin ◽  
Li Liu ◽  
Hanying Zhao

Alkylation of thioether-containing block copolymer simultaneously incorporated sulfoniums and phenylboronic acid moieties. The co-assembly of this cationic polymer and protein generated micelles with an H2O2-and ATP-responsive release profile.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 201
Author(s):  
Stefano Paolillo ◽  
Ranjita K. Bose ◽  
Marianella Hernández Santana ◽  
Antonio M. Grande

This article reviews some of the intrinsic self-healing epoxy materials that have been investigated throughout the course of the last twenty years. Emphasis is placed on those formulations suitable for the design of high-performance composites to be employed in the aerospace field. A brief introduction is given on the advantages of intrinsic self-healing polymers over extrinsic counterparts and of epoxies over other thermosetting systems. After a general description of the testing procedures adopted for the evaluation of the healing efficiency and the required features for a smooth implementation of such materials in the industry, different self-healing mechanisms, arising from either physical or chemical interactions, are detailed. The presented formulations are critically reviewed, comparing major strengths and weaknesses of their healing mechanisms, underlining the inherent structural polymer properties that may affect the healing phenomena. As many self-healing chemistries already provide the fundamental aspects for recyclability and reprocessability of thermosets, which have been historically thought as a critical issue, perspective trends of a circular economy for self-healing polymers are discussed along with their possible advances and challenges. This may open up the opportunity for a totally reconfigured landscape in composite manufacturing, with the net benefits of overall cost reduction and less waste. Some general drawbacks are also laid out along with some potential countermeasures to overcome or limit their impact. Finally, present and future applications in the aviation and space fields are portrayed.


Sign in / Sign up

Export Citation Format

Share Document