High temperature molecular-based phase transition compounds with tunable and switchable dielectric properties

CrystEngComm ◽  
2022 ◽  
Author(s):  
Min Wan ◽  
Yan-Ning Wang ◽  
Jing-Yuan Liu ◽  
Liang Tong ◽  
Si-Yu Ye ◽  
...  

Molecular-based dielectric switching materials have recently attracted tremendous interest in the fields of data storage, signal processors and snesors due to tunability, flexibility and good biocompatibility, which is promissing for...

2012 ◽  
Author(s):  
K. R. S. Preethi Meher ◽  
Pierre-Eymeric Janolin ◽  
Nicolas Guiblin ◽  
Gadige Paramesh ◽  
K. B. R. Varma

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Alvarez ◽  
M. A. Fernandez-Rodriguez ◽  
A. Alegria ◽  
S. Arrese-Igor ◽  
K. Zhao ◽  
...  

AbstractSelf-propelling microparticles are often proposed as synthetic models for biological microswimmers, yet they lack the internally regulated adaptation of their biological counterparts. Conversely, adaptation can be encoded in larger-scale soft-robotic devices but remains elusive to transfer to the colloidal scale. Here, we create responsive microswimmers, powered by electro-hydrodynamic flows, which can adapt their motility via internal reconfiguration. Using sequential capillary assembly, we fabricate deterministic colloidal clusters comprising soft thermo-responsive microgels and light-absorbing particles. Light absorption induces preferential local heating and triggers the volume phase transition of the microgels, leading to an adaptation of the clusters’ motility, which is orthogonal to their propulsion scheme. We rationalize this response via the coupling between self-propulsion and variations of particle shape and dielectric properties upon heating. Harnessing such coupling allows for strategies to achieve local dynamical control with simple illumination patterns, revealing exciting opportunities for developing tactic active materials.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3216-3219 ◽  
Author(s):  
M. Ausloos ◽  
S. Dorbolo

A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2T c where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.


1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document