Mechanistic understanding of the increased photoactivity of TiO2 nanosheets upon tantalum doping

Author(s):  
Hanggara Sudrajat ◽  
Sri Hartuti ◽  
Sandhya Babel

Doping of Ta5+ into TiO2 replaces Ti4+ to decrease the recombination rate and elongate the electron lifetime due to the formation of shallow electron traps from Ti3+ defects. The elongated electron lifetime increases electron population and photocatalytic activity.

NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850129 ◽  
Author(s):  
Chujun Chen ◽  
Xia Xin ◽  
Jinniu Zhang ◽  
Gang Li ◽  
Yafeng Zhang ◽  
...  

To improve the high charge carrier recombination rate and low visible light absorption of {001} facets exposed TiO2 [TiO2(001)] nanosheets, few-layered MoS2 nanoparticles were loaded on the surfaces of TiO2(001) nanosheets by a simple photodeposition method. The photocatalytic activities towards Rhodamine B (RhB) were investigated. The results showed that the MoS2–TiO2(001) nanocomposites exhibited much enhanced photocatalytic activities compared with the pure TiO2(001) nanosheets. At an optimal Mo/Ti molar ratio of 25%, the MoS2–TiO2(001) nanocomposites displayed the highest photocatalytic activity, which took only 30[Formula: see text]min to degrade 50[Formula: see text]mL of RhB (50[Formula: see text]mg/L). The active species in the degradation reaction were determined to be h[Formula: see text] and [Formula: see text]OH according to the free radical trapping experiments. The reduced charge carrier recombination rate, enhanced visible light utilization and increased surface areas contributed to the enhanced photocatalytic performances of the 25% MoS2–TiO2(001) nanocomposites.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chang Sun ◽  
Zitong Zhao ◽  
Hougang Fan ◽  
Yanli Chen ◽  
Xiaoyan Liu ◽  
...  

As the concentration of the W dopant increased in the Bi2Mo1−xWxO6 nanosheets, the density of the oxygen vacancies became higher, which served as electron trap centers to lower the recombination rate and enhance the photocatalytic performance.


2019 ◽  
Vol 9 (2) ◽  
pp. 336-346 ◽  
Author(s):  
Jinjin Lin ◽  
Jiangshan Hu ◽  
Chengwei Qiu ◽  
Huijuan Huang ◽  
Lu Chen ◽  
...  

In situ fabricated CaTiO3/TiO2 heterojunction shows highly photocatalytic activity for reduction of CO2 to CO with H2O.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 338 ◽  
Author(s):  
Xueding Jiang ◽  
Weicheng Xu ◽  
Lian Yu

Ag nanoparticles loaded onto TiO2 nanosheets with exposed {001} facets were synthesized by solvothermal hydrolysis and photoreduction deposition methods. The results suggested that Ag NPs were uniformly dispersed on the surface of anatase TiO2 NSs with a metallic state. The Raman scattering and visible light absorption performances of Ag/TiO2 NSs were enhanced by Ag NPs due to their surface plasmon resonance effect. Photocatalytic oxidation experiments for HCHO were carried out under visible light, and the enhanced photocatalytic activity of Ag/TiO2 NSs can be attributed to the synergistic effects of the following factors: (1) the {001} facets, which possessed higher surface energy, showed higher photocatalytic activity; (2) the Ag NPs, the increased oxygen vacancies, and O2 adsorption on {001} facets can trap photoelectrons, thus inhibiting the recombination of photoelectrons and holes; (3) the Ag NPs can extend the light response range of TiO2 into visible light. The in situ FTIR results showed that higher mineralization efficiency of HCHO was achieved on Ag/TiO2 NSs than on Ag/TiO2 NPs. Additionally, the mechanism for HCHO photocatalytic oxidation was also discussed.


Sign in / Sign up

Export Citation Format

Share Document