Designing high performance polymer nanocomposites by incorporating robustness-controlled polymeric nanoparticles: insights from molecular dynamics

Author(s):  
Guangyi Hou ◽  
Sai Li ◽  
Jun Liu ◽  
Yun-Xuan Weng ◽  
Liqun Zhang

Introducing polymer nanoparticles into polymer matrices is an interesting topic, and the robustness of polymeric nanoparticles is very crucial for the properties of polymer nanocomposites (PNCs). In this study, by...

Author(s):  
Xiu Li ◽  
Ziwei Li ◽  
Jianxiang Shen ◽  
Zijian Zheng ◽  
Jun Liu

Fully understanding the mechanism by which nanoparticles (NPs) strengthen polymer matrices is crucial for fabricating high-performance polymer nanocomposites (PNCs). Herein, coarse-grained molecular dynamics simulations were adopted to explicitly investigate the...


2021 ◽  
Author(s):  
SWAPNIL BAMANE ◽  
PRASHIK GAIKWAD ◽  
MATTHEW RADUE ◽  
S. GOWTHAM ◽  
GREGORY ODEGARD

There is a wide application of carbon nanotube (CNT) based composite materials for structural applications in the aerospace industry. CNT composites are often manufactured with high performance polymer resins as a matrix. Resin wettability with specific reinforcement types is a key parameter in manufacturing CNT composites. Wettability of a liquid resin and reinforcement combination is often measured and quantified by the contact angle. Various experimental methods have been developed to determine the contact angle which can be expensive while working with high-performance resins and CNT materials such as CNT yarns, bundles, or forests. Fortunately, computational simulations can greatly facilitate CNT composite material design by efficiently predicting the contact angle for a wide range of resins. In this study, a molecular dynamics (MD) framework is developed to determine the contact angle value of high-performance polymer resins on aromatic and aliphatic carbon surfaces (Figure 1). It is determined that monomer length and functional groups have a significant impact on the contact angle. Further, based on these results, qualitative deductions of contact angle values of highperformance resins on CNT materials with amorphous carbon content are made.


2008 ◽  
Vol 57 (4) ◽  
pp. 547-553 ◽  
Author(s):  
Stéphane Bredeau ◽  
Sophie Peeterbroeck ◽  
Daniel Bonduel ◽  
Michaël Alexandre ◽  
Philippe Dubois

2020 ◽  
Vol 16 (2) ◽  
pp. 145-153
Author(s):  
Fathin Najihah Nor Mohd Hussin ◽  
Roswanira Abdul Wahab ◽  
Nursyafreena Attan

The advancement of nanotechnology has opened a new opportunity to develop nanocomposites using nanocellulose (NC) and nanoclay (NCl). Researchers have regarded these nanocomposites as promising substitutes for conventional polymers because of their characteristic and useful features, which include exceptional strength and stiffness, low weight, and low environmental impact. These features of NC and NCl explain their multifarious applications across many sectors. Here we review NC and NCl as well as various reinforced polymer composites that are made up of either of the two nanomaterials. The structural and physicochemical properties of NC and NCl are highlighted, along with the mechanical behavior and thermal properties of NC. Current nanomaterial hybrid biopolymers for the production of novel high-performance polymer nanocomposites are also discussed with respect to their mechanical properties.


2021 ◽  
Vol 17 ◽  
Author(s):  
Tushar T. Hawal ◽  
Maharudra S. Patil ◽  
Siddalinga Swamy ◽  
Raviraj M. Kulkarni

: Graphene as a nanofiller has gained tremendous importance in polymer nanocomposites for many applications. The attractive properties of graphene related to mechanical, electrical, and thermal domains pose a lucrative means of reinforcing the polymers to obtain the needed properties. The rise in the use of polymers supports this trend and urges the researchers to excavate the hidden plethora of nanocomposite materials for multifunctional applications. In this review, an overview is provided on graphene-based materials which have been used extensively in various fields, such as batteries, aerospace, automobile and biomedical fields. An increasing trend of graphene usage by many researchers as a nanofiller in polymer composites, its types, processing methods are highlighted with suitable applications to assimilate the updates in the development of graphene nanocomposites.


2020 ◽  
Vol 137 (48) ◽  
pp. 49586
Author(s):  
Peng Wang ◽  
Mengxing Li ◽  
Jiajia Zhang ◽  
Lei Dong ◽  
Hongbin Lu

Sign in / Sign up

Export Citation Format

Share Document