scholarly journals Correction: Space charge limited release of charged inverse micelles in non-polar liquids

Author(s):  
Manoj Prasad ◽  
Filip Strubbe ◽  
Filip Beunis ◽  
Kristiaan Neyts

Correction for ‘Space charge limited release of charged inverse micelles in non-polar liquids’ by Manoj Prasad et al., Phys. Chem. Chem. Phys., 2016, 18, 19289–19298, DOI: 10.1039/C6CP03544B.

2016 ◽  
Vol 18 (28) ◽  
pp. 19289-19298 ◽  
Author(s):  
Manoj Prasad ◽  
Filip Strubbe ◽  
Filip Beunis ◽  
Kristiaan Neyts

Charged inverse micelles (CIMs) generated during a continuous polarizing voltage between electrodes in the model system of polyisobutylene succinimide in dodecane do not populate a diffuse double layer like CIMs present in equilibrium (regular CIMs), but instead end up in interface layers.


2018 ◽  
Author(s):  
Tim Gould

The GMTKN55 benchmarking protocol introduced by [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184] allows comprehensive analysis and ranking of density functional approximations with diverse chemical behaviours. But this comprehensiveness comes at a cost: GMTKN55's 1500 benchmarking values require energies for around 2500 systems to be calculated, making it a costly exercise. This manuscript introduces three subsets of GMTKN55, consisting of 30, 100 and 150 systems, as `diet' substitutes for the full database. The subsets are chosen via a stochastic genetic approach, and consequently can reproduce key results of the full GMTKN55 database, including ranking of approximations.


1966 ◽  
Vol 2 (7) ◽  
pp. 282
Author(s):  
A.M. Phahle ◽  
K.C. Kao ◽  
J.H. Calderwood

1995 ◽  
Vol 377 ◽  
Author(s):  
G. J. Adriaenssens ◽  
B. Yan ◽  
A. Eliat

ABSTRACTA full and detailed transient space-charge-limited current (T-SCLC) study of a-Si:H p-i-n diodes has been carried out in the time range from 108s to 10s. In the short-time regime, general features of T-SCLC such as the current cusp and the carrier extraction period were observed, and related transport parameters were deduced. Electron emission from deep states was studied by measuring the current transients well beyond the extraction time. The emission time is thermally activated at temperatures higher than 250K and levels off at lower temperatures. The high temperature behaviour places the upper edge of the deep states at 0.42–0.52eV below the conduction band edge, and the attempt-to-escape frequency in the range of 1011-1013Hz. An observed shift of emission time with light intensity is attributed to defect relaxation.


Author(s):  
Shyamal Mondal ◽  
Debasree Chowdhury ◽  
Pabitra Das ◽  
Biswarup Satpati ◽  
Debabrata Ghose ◽  
...  

Correction for ‘Observation of ordered arrays of endotaxially grown nanostructures from size-selected Cu-nanoclusters deposited on patterned substrates of Si’ by Shyamal Mondal et al., Phys. Chem. Chem. Phys., 2021, 23, 6009–6016 DOI: 10.1039/D0CP06089E.


Author(s):  
Aditya G. Rao ◽  
Christian Wiebeler ◽  
Saumik Sen ◽  
David S. Cerutti ◽  
Igor Schapiro

Correction for ‘Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2’ by Aditya G. Rao et al., Phys. Chem. Chem. Phys., 2021, DOI: 10.1039/d0cp05314g.


Sign in / Sign up

Export Citation Format

Share Document