Influence of Different Ester Side Groups in Polymers on the Vapor Phase Infiltration with Trimethyl Aluminum

2022 ◽  
Author(s):  
Lukas Mai ◽  
Dina Maniar ◽  
Frederik Zysk ◽  
Judith Schöbel ◽  
Thomas Kühne ◽  
...  

The vapor phase infiltration (VPI) process of trimethyl aluminum (TMA) into poly(4-acetoxystyrene) (POAcSt), poly(nonyl methacrylate) (PNMA) and poly(tert-butyl methacrylate) (PtBMA) is reported. Depth-profiling X-ray photoelectron spectroscopy (XPS) measurements are used...

1978 ◽  
Vol 32 (2) ◽  
pp. 175-177 ◽  
Author(s):  
L. Bradley ◽  
Y. M. Bosworth ◽  
D. Briggs ◽  
V. A. Gibson ◽  
R. J. Oldman ◽  
...  

The difficulties of nonuniform ion etching which hamper depth profiling by X-ray photoelectron spectroscopy (XPS) have been overcome by use of a mechanically scanned saddle-field ion source. The system and its calibration for uniformity are described, and its performance is illustrated by the depth profile of a Si3N4/SiO2/Si metal nitride oxide silicon device. This also allows the potential advantages of XPS profiling over Auger electron spectroscopy profiling to be discussed.


2011 ◽  
Vol 6 (1) ◽  
pp. 22-24 ◽  
Author(s):  
Prasanna Sivasubramani ◽  
Tae Joo Park ◽  
Brian E. Coss ◽  
Antonio Lucero ◽  
Jie Huang ◽  
...  

2005 ◽  
Vol 863 ◽  
Author(s):  
P. Ryan Fitzpatrick ◽  
Sri Satyanarayana ◽  
Yangming Sun ◽  
John M. White ◽  
John G. Ekerdt

AbstractBlanket porous methyl silsesquioxane (pMSQ) films on a Si substrate were studied with the intent to seal the pores and prevent penetration of a metallic precursor during barrier deposition. The blanket pMSQ films studied were approximately 220 nm thick and had been etched and ashed. When tantalum pentafluoride (TaF5) is exposed to an unsealed pMSQ sample, X-ray photoelectron spectroscopy (XPS) depth profiling and secondary ion mass spectroscopy (SIMS) depth profiling reveal penetration of Ta into the pores all the way to the pMSQ / Si interface. Boron carbo-nitride films were grown by thermal chemical vapor deposition (CVD) using dimethylamine borane (DMAB) precursor with Ar carrier gas and C2H4 coreactant. These films had a stoichiometry of BC0.9N0.07 and have been shown in a previous study to have a k value as low as 3.8. BC0.9N0.07 films ranging from 1.8 to 40.6 nm were deposited on pMSQ and then exposed to TaF5 gas to determine the extent of Ta penetration into the pMSQ. Ta penetration was determined by XPS depth profiling and sometimes SIMS depth profiling. XPS depth profiling of a TaF5 / 6.3 nm BC0.9N0.07 / pMSQ / Si film stack indicates the attenuation of the Ta signal to < 2 at. % throughout the pMSQ. Backside SIMS of this sample suggests that trace amounts of Ta (< 2 at. %) are due to knock-in by Ar ions used for sputtering. An identical film stack containing 3.9 nm BC0.9N0.07 was also successful at inhibiting Ta penetration even with a 370°C post-TaF5 exposure anneal, suggesting the stability of BC0.9N0.07 to thermal diffusion of Ta. All BC0.9N0.07 films thicker than and including 3.9 nm prevented Ta from penetrating into the pMSQ.


2018 ◽  
Vol 122 (26) ◽  
pp. 14889-14897 ◽  
Author(s):  
Irene Papagiannouli ◽  
Minna Patanen ◽  
Valérie Blanchet ◽  
John D. Bozek ◽  
Manuel de Anda Villa ◽  
...  

2019 ◽  
Vol 963 ◽  
pp. 226-229
Author(s):  
Kidist Moges ◽  
Mitsuru Sometani ◽  
Takuji Hosoi ◽  
Takayoshi Shimura ◽  
Shinsuke Harada ◽  
...  

We demonstrated an x-ray photoelectron spectroscopy (XPS)-based technique to reveal the detailed nitrogen profile in nitrided SiO2/4H-SiC structures with sub-nanometer-scale-resolution. In this work, nitric oxide (NO)- and pure nitrogen (N2)-annealed SiO2/4H-SiC(0001) structures were characterized. The measured results of NO-annealed samples with various annealing duration indicate that preferential nitridation just at the SiO2/SiC interfaces (~0.3 nm) proceeds in the initial stage of NO annealing and a longer duration leads to the distribution of nitrogen in the bulk SiO2 within few nanometers of the interface. The high-temperature N2 annealing was found to induce not only SiO2/SiC interface nitridation similarly to NO annealing but also SiO2 surface nitridation.


2010 ◽  
Vol 28 (2) ◽  
pp. L1-L4 ◽  
Author(s):  
T. Miyayama ◽  
N. Sanada ◽  
M. Suzuki ◽  
J. S. Hammond ◽  
S.-Q. D. Si ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document