Interfacial interaction induced OER activity of MOF derived superhydrophilic Co3O4-NiO hybrid nanostructures

2022 ◽  
Author(s):  
Ashish Gaur ◽  
Vikas Pundir ◽  
Krishankant . ◽  
Ritu Rai ◽  
Baljeet Kaur ◽  
...  

Electrocatalytic water splitting is one of the key technology for the future energy systems envisioned for the storage of energy obtained from variable renewables and green fuels. The development of...

2017 ◽  
Vol 76 (5) ◽  
pp. 1225-1233 ◽  
Author(s):  
M. Schäfer ◽  
I. Hobus ◽  
T. G. Schmitt

In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.


2021 ◽  
Author(s):  
Guojuan Hai ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Koji Kajiyoshi ◽  
Long Wang ◽  
...  

Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for the renewable energy systems. Herein, a typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method....


Author(s):  
Dilara Gulcin Caglayan ◽  
Severin Ryberg ◽  
Heidi Heinrichs ◽  
Jochen Linßen ◽  
Detlef Stolten ◽  
...  

Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.


2020 ◽  
Vol 388 ◽  
pp. 125605 ◽  
Author(s):  
R. Sánchez-Tovar ◽  
E. Blasco-Tamarit ◽  
R.M. Fernández-Domene ◽  
M. Villanueva-Pascual ◽  
J. García-Antón

2019 ◽  
Vol 55 (19) ◽  
pp. 2781-2784 ◽  
Author(s):  
Haiqing Wang ◽  
Huiling Liu ◽  
Yanchen Ji ◽  
Ruiqi Yang ◽  
Zengfu Zhang ◽  
...  

Hybrid nanostructures of pit-rich TiO2 nanocrystals with ruthenium loading and nitrogen-doping exhibited enhanced solar water splitting.


Sign in / Sign up

Export Citation Format

Share Document