Removal of CO2 from High-Temperature Flue Gas by PDMS/IL composite membranes

2022 ◽  
Author(s):  
Mian Wu ◽  
Xuehua Li ◽  
Xiaobing Li

Membrane separation of CO2 from high-temperature flue gas has economic benefits. Thus, the development of thermal-stable polymeric membranes with efficient permselectivity is very crucial. In this work, we designed a...

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1466 ◽  
Author(s):  
Luchen Wang ◽  
Yan Wang ◽  
Lianying Wu ◽  
Gang Wei

Membrane separation technologies have attracted great attentions in chemical engineering, food science, analytical science, and environmental science. Compared to traditional membrane separation techniques like reverse osmosis (RO), ultrafiltration (UF), electrodialysis (ED) and others, pervaporation (PV)-based membrane separation shows not only mutual advantages such as small floor area, simplicity, and flexibility, but also unique characteristics including low cost as well as high energy and separation efficiency. Recently, different polymer, ceramic and composite membranes have shown promising separation applications through the PV-based techniques. To show the importance of PV for membrane separation applications, we present recent advances in the fabrication, properties and performances of polymeric membranes for PV separation of various chemicals in petrochemical, desalination, medicine, food, environmental protection, and other industrial fields. To promote the easy understanding of readers, the preparation methods and the PV separation mechanisms of various polymer membranes are introduced and discussed in detail. This work will be helpful for developing novel functional polymer-based membranes and facile techniques to promote the applications of PV techniques in different fields.


2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Shuli Liu

In the automobile painting workshop, the oven will discharge harmful exhaust gas, the exhaust gas can be reused through the TNV system, the natural gas can meet the emission standard to the atmosphere after burning, and the high temperature gas discharged TNV the system can carry considerable heat. Utilization can effectively improve the economic benefits of the factory. At present, the more mature scheme is to heat the high temperature exhaust gas through the heat exchanger, which can reduce the steam consumption of the factory. Based on the analysis of the comprehensive energy saving content of waste heat utilization of RTO flue gas, this paper hopes to provide some reference and reference for readers.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1871
Author(s):  
Ricardo Abejón ◽  
Clara Casado-Coterillo ◽  
Aurora Garea

The effective separation of CO2 and CH4 mixtures is essential for many applications, such as biogas upgrading, natural gas sweetening or enhanced oil recovery. Membrane separations can contribute greatly in these tasks, and innovative membrane materials are being developed for this gas separation. The aim of this work is the evaluation of the potential of two types of highly CO2-permeable membranes (modified commercial polydimethylsiloxane and non-commercial ionic liquid–chitosan composite membranes) whose selective layers possess different hydrophobic and hydrophilic characteristics for the separation of CO2/CH4 mixtures. The study of the technical performance of the selected membranes can provide a better understanding of their potentiality. The optimization of the performance of hollow fiber modules for both types of membranes was carried out by a “distance-to-target” approach that considered multiple objectives related to the purities and recovery of both gases. The results demonstrated that the ionic liquid–chitosan composite membranes improved the performance of other innovative membranes, with purity and recovery percentage values of 86 and 95%, respectively, for CO2 in the permeate stream, and 97 and 92% for CH4 in the retentate stream. The developed multiobjective optimization allowed for the determination of the optimal process design and performance parameters, such as the membrane area, pressure ratio and stage cut required to achieve maximum values for component separation in terms of purity and recovery. Since the purities and recoveries obtained were not enough to fulfill the requirements imposed on CO2 and CH4 streams to be directly valorized, the design of more complex multi-stage separation systems was also proposed by the application of this optimization methodology, which is considered as a useful tool to advance the implementation of the membrane separation processes.


Alloy Digest ◽  
1994 ◽  
Vol 43 (5) ◽  

Abstract URANUS 52N is a nitrogen-alloyed duplex stainless steel improved in stress-corrosion cracking resistance and with pitting and crevice corrosion resistance better than AISI Type 317L. Applications include handling phosphoric acid contaminated with chlorides and in flue gas desulfurization scrubbers. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-566. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
2004 ◽  
Vol 53 (8) ◽  

Abstract AL 4565 alloy has a high level of austenitizers, which provides the microstructure with a high resistance to sigma formation during welding. The high nitrogen also gives the alloy superior strength among the austenitics. Applications include flue gas desulfurization and handling seawater. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-906. Producer or source: Allegheny Ludlum Corporation.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1063
Author(s):  
Manuel Toledano-Osorio ◽  
Francisco J. Manzano-Moreno ◽  
Manuel Toledano ◽  
Antonio L. Medina-Castillo ◽  
Victor J. Costela-Ruiz ◽  
...  

Polymeric membranes are employed in guided bone regeneration (GBR) as physical barriers to facilitate bone in-growth. A bioactive and biomimetic membrane with the ability to participate in the healing and regeneration of the bone is necessary. The aim of the present study was to analyze how novel silicon dioxide composite membranes functionalized with zinc or doxycycline can modulate the osteoblasts’ proliferation, differentiation, and expression of selected antigenic markers related to immunomodulation. Nanostructured acrylate-based membranes were developed, blended with silica, and functionalized with zinc or doxycycline. They were subjected to MG63 osteoblast-like cells culturing. Proliferation was assessed by MTT-assay, differentiation by evaluating the alkaline phosphatase activity by a spectrophotometric method and antigenic phenotype was assessed by flow cytometry for selected markers. Mean comparisons were conducted by one-way ANOVA and Tukey tests (p < 0.05). The blending of silica nanoparticles in the tested non-resorbable polymeric scaffold improved the proliferation and differentiation of osteoblasts, but doxycycline doped scaffolds attained the best results. Osteoblasts cultured on doxycycline functionalized membranes presented higher expression of CD54, CD80, CD86, and HLA-DR, indicating a beneficial immunomodulation activity. Doxycycline doped membranes may be a potential candidate for use in GBR procedures in several challenging pathologies, including periodontal disease.


Sign in / Sign up

Export Citation Format

Share Document