In Situ Formation Hg2+-Coordinated Fluorescent Nanoparticles through Supramolecular Polymer Network, An Efficient Way for Hg2+ Sensing and Separation

Nanoscale ◽  
2021 ◽  
Author(s):  
Ying-Jie Li ◽  
Qi Lin ◽  
Zhenghua Zhang ◽  
Tai-Bao Wei ◽  
Bing-Bing Shi ◽  
...  

Exploiting new way for synthesis novel nanomaterials with special functions is intriguing. Herein, a novel strategy, Hg2+ induced supramolecular polymer network to in situ form fluorescent nanoparticles has been developed,...

Biomaterials ◽  
2018 ◽  
Vol 170 ◽  
pp. 12-25 ◽  
Author(s):  
Hamid Sadeghi Abandansari ◽  
Mohammad Hossein Ghanian ◽  
Fahimeh Varzideh ◽  
Elena Mahmoudi ◽  
Sarah Rajabi ◽  
...  

2017 ◽  
Vol 355 ◽  
pp. 147-153 ◽  
Author(s):  
Liming Jin ◽  
Gaoran Li ◽  
Binhong Liu ◽  
Zhoupeng Li ◽  
Junsheng Zheng ◽  
...  

2019 ◽  
Vol 14 (19) ◽  
pp. 3274-3278 ◽  
Author(s):  
You‐Ming Zhang ◽  
Jun‐Xia He ◽  
Wei Zhu ◽  
Wen‐Juan Qu ◽  
Zhe Zhang ◽  
...  

2016 ◽  
Vol 3 (11) ◽  
pp. 1406-1410 ◽  
Author(s):  
Raymond Wai-Yin Sun ◽  
Ruo-Fan Xu ◽  
Huan-Quan Song ◽  
Camille Saint-Germain ◽  
Ming Zhang ◽  
...  

A gold(i)–pyrazolato complex has been designed as a luminescent probe for cysteine (Cys).


2021 ◽  
Author(s):  
Kaifang Wang ◽  
Hai Wang ◽  
Jingjing Li ◽  
Yujia Liang ◽  
Xiao-Qiao Xie ◽  
...  

The current tough and stretchable gels with various integrated functions are mainly based on polymer hydrogels. By introducing a non-covalent supramolecular self-assembled network into a covalently cross-linked polymer network in...


2019 ◽  
Vol 491 (4) ◽  
pp. 5595-5620 ◽  
Author(s):  
Sanson T S Poon ◽  
Richard P Nelson ◽  
Seth A Jacobson ◽  
Alessandro Morbidelli

ABSTRACT The NASA’s Kepler mission discovered ∼700 planets in multiplanet systems containing three or more transiting bodies, many of which are super-Earths and mini-Neptunes in compact configurations. Using N-body simulations, we examine the in situ, final stage assembly of multiplanet systems via the collisional accretion of protoplanets. Our initial conditions are constructed using a subset of the Kepler five-planet systems as templates. Two different prescriptions for treating planetary collisions are adopted. The simulations address numerous questions: Do the results depend on the accretion prescription?; do the resulting systems resemble the Kepler systems, and do they reproduce the observed distribution of planetary multiplicities when synthetically observed?; do collisions lead to significant modification of protoplanet compositions, or to stripping of gaseous envelopes?; do the eccentricity distributions agree with those inferred for the Kepler planets? We find that the accretion prescription is unimportant in determining the outcomes. The final planetary systems look broadly similar to the Kepler templates adopted, but the observed distributions of planetary multiplicities or eccentricities are not reproduced, because scattering does not excite the systems sufficiently. In addition, we find that ∼1 per cent of our final systems contain a co-orbital planet pair in horseshoe or tadpole orbits. Post-processing the collision outcomes suggests that they would not significantly change the ice fractions of initially ice-rich protoplanets, but significant stripping of gaseous envelopes appears likely. Hence, it may be difficult to reconcile the observation that many low-mass Kepler planets have H/He envelopes with an in situ formation scenario that involves giant impacts after dispersal of the gas disc.


AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065015
Author(s):  
Fu Yi ◽  
Xupeng Qi ◽  
Xuexin Zheng ◽  
Huize Yu ◽  
Wenming Bai ◽  
...  

Author(s):  
Liang Yao ◽  
Yongpeng Liu ◽  
Han-Hee Cho ◽  
Meng Xia ◽  
Arvindh Sekar ◽  
...  

The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.


Sign in / Sign up

Export Citation Format

Share Document