Tetradentate halogen bonding macrocyclic anion receptor inspired by the “Texas-sized” molecular box

Author(s):  
Tian Zhao ◽  
Vincent Lynch ◽  
Jonathan L. Sessler

Inspired by the tetracationic “Texas-sized” molecular box, a neutral analogue containing four iodotriazole halogen bond-promoting subunits (“Ibox”) was synthesized. This new macrocycle was prepared by means of azide-alkyne click chemistry....

Synthesis ◽  
2019 ◽  
Vol 51 (10) ◽  
pp. 2128-2135 ◽  
Author(s):  
Mikk Kaasik ◽  
Sandra Kaabel ◽  
Kadri Kriis ◽  
Ivar Järving ◽  
Tõnis Kanger

The number of applications that use halogen bonding in the fields of self-assembly, supramolecular aggregation, and catalysis is growing. However, the accessibility of chiral halotriazoles shows that there is still a lot more to explore. The simple click-chemistry is applied for the straightforward synthesis of enantiomerically pure mono- and bidentate as well as multifunctional iodotriazole-based XB donors. The methodology is characterized by a wide variability due to easy access of chiral azides.


2019 ◽  
Vol 55 (13) ◽  
pp. 1919-1922 ◽  
Author(s):  
Jessica A. Lohrman ◽  
Chun-Lin Deng ◽  
Trevor A. Shear ◽  
Lev N. Zakharov ◽  
Michael M. Haley ◽  
...  

Easy-to-synthesize methanesulfonyl substituents are introduced as a way to polarize C–I halogen bond donors for reversible halide binding in competitive media.


2016 ◽  
Vol 52 (56) ◽  
pp. 8645-8658 ◽  
Author(s):  
Asha Brown ◽  
Paul D. Beer

The development of solution-based anion receptor molecules which exploit halogen bonding interactions is an emerging area of research. This Feature Article reviews recent advances which have been made in this rapidly developing field, surveying the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design and describing the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 224 ◽  
Author(s):  
Yannick Roselló ◽  
Mónica Benito ◽  
Elies Molins ◽  
Miquel Barceló-Oliver ◽  
Antonio Frontera

In this work, we report the cocrystallization of N9-ethyladenine with 1,2,4,5-tetrafluoro-3,6-diiodobenzene (TFDIB), a classical XB donor. As far as our knowledge extends, this is the first cocrystal reported to date where an adenine derivative acts as a halogen bond acceptor. In the solid state, each adenine ring forms two centrosymmetric H-bonded dimers: one using N1···HA6–N6 and the other N7···HB6–N6. Therefore, only N3 is available as a halogen bond acceptor that, indeed, establishes an N···I halogen bonding interaction with TFDIB. The H-bonded dimers and halogen bonds have been investigated via DFT (Density Functional Theory) calculations and the Bader’s Quantum Theory of Atoms In Molecules (QTAIM) method at the B3LYP/6-311+G* level of theory. The influence of H-bonding interactions on the lone pair donor ability of N3 has also been analyzed using the molecular electrostatic potential (MEP) surface calculations.


Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


2018 ◽  
Vol 42 (13) ◽  
pp. 10615-10622 ◽  
Author(s):  
Chideraa I. Nwachukwu ◽  
Zachary R. Kehoe ◽  
Nathan P. Bowling ◽  
Erin D. Speetzen ◽  
Eric Bosch

Matched electron rich halogen bond acceptors and donor have been synthesized and the halogen bonded charge transfer cocrystals characterized.


2022 ◽  
Author(s):  
Asia Marie S Riel ◽  
Daniel Adam Decato ◽  
Jiyu Sun ◽  
Orion Berryman

Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond...


2020 ◽  
Vol 21 (18) ◽  
pp. 6571
Author(s):  
Nicholas J. Thornton ◽  
Tanja van Mourik

Halogen bonding is studied in different structures consisting of halogenated guanine DNA bases, including the Hoogsteen guanine–guanine base pair, two different types of guanine ribbons (R-I and R-II) consisting of two or three monomers, and guanine quartets. In the halogenated base pairs (except the Cl-base pair, which has a very non-planar structure with no halogen bonds) and R-I ribbons (except the At trimer), the potential N-X•••O interaction is sacrificed to optimise the N-X•••N halogen bond. In the At trimer, the astatines originally bonded to N1 in the halogen bond donating guanines have moved to the adjacent O6 atom, enabling O-At•••N, N-At•••O, and N-At•••At halogen bonds. The brominated and chlorinated R-II trimers contain two N-X•••N and two N-X•••O halogen bonds, whereas in the iodinated and astatinated trimers, one of the N-X•••N halogen bonds is lost. The corresponding R-II dimers keep the same halogen bond patterns. The G-quartets display a rich diversity of symmetries and halogen bond patterns, including N-X•••N, N-X•••O, N-X•••X, O-X•••X, and O-X•••O halogen bonds (the latter two facilitated by the transfer of halogens from N1 to O6). In general, halogenation decreases the stability of the structures. However, the stability increases with the increasing atomic number of the halogen, and the At-doped R-I trimer and the three most stable At-doped quartets are more stable than their hydrogenated counterparts. Significant deviations from linearity are found for some of the halogen bonds (with halogen bond angles around 150°).


2017 ◽  
Vol 203 ◽  
pp. 485-507 ◽  
Author(s):  
Lee Brammer

The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203rdFaraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10–12thJuly, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36723-36727 ◽  
Author(s):  
G. Cavallo ◽  
P. Metrangolo ◽  
T. Pilati ◽  
G. Resnati ◽  
A. Scrivanti ◽  
...  

The application of “click chemistry” has proved its efficacy for the construction of novel molecular modules for halogen bonding driven self-assembly.


Sign in / Sign up

Export Citation Format

Share Document