scholarly journals Development of a gliclazide ionic liquid and its mesoporous silica particles: an effective formulation strategy to improve oral absorption properties

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1062-1076
Author(s):  
Bijian Zhou ◽  
Dan Teng ◽  
Jinghui Li ◽  
Yanhong Zhang ◽  
Minghui Qi ◽  
...  

An ionic liquid (IL) form of gliclazide with enhanced solubility characteristics was successfully synthesized. This IL could be loaded into mesoporous silica carrier and exhibited improved dissolution behavior in vitro.

2014 ◽  
Vol 602-603 ◽  
pp. 55-58
Author(s):  
Xiao Yun Jia ◽  
Ya Zhen Wu ◽  
Qing Cai ◽  
Xiao Ping Yang ◽  
De Ping Liu ◽  
...  

To develop a kind of gastrointestinal timed-release preparation for Metoprolol Tartrate, nanostructured silica particles were chose for the purpose. Briefly, MCM-41 type mesoporous silica nanospheres with a size of 100-200 nm were synthesized through the reaction of tetraethyl orthosilicate (TEOS) in the water medium at 353 K, with introducing some cetyltrimethyl ammonium bromide (CTAB) as porogens. Various analytical methods, including FT-IR, XRD, TEM, N2 physisorption and thermal analysis, were applied to characterize the final products. Metoprolol Tartrate was then loaded into the mesoporous silica nanospheres by soaking. Results of the release of the drug in simulated gastric juice indicated that the drug can release up to 24 h and its maximum released amount was 4.5%. In the simulated intestinal juice the maximum cumulative released amount of metorprolol was 10.8%.In vitro release behavior revealed that the mesoporous silica were appropriate used as drug delivery system.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1290 ◽  
Author(s):  
Elisa Poyatos-Racionero ◽  
Isabel González-Álvarez ◽  
Marta González-Álvarez ◽  
Ramón Martínez-Máñez ◽  
M. Dolores Marcos ◽  
...  

In recent decades, the versatility of mesoporous silica particles and their relevance to develop controlled release systems have been demonstrated. Within them, gated materials able to modulate payload delivery represent great advantages. However, the role played by the porous matrix in this kind of systems is scarce. In this work, different mesoporous silica materials (MCM-41, MCM-48, SBA-15 and UVM-7) are functionalized with oleic acid as a molecular gate. All systems are fully characterized and their ability to confine the entrapped cargo and release it in the presence of bile salts is validated with release assays and in vitro digestion experiments. The cargo release profile of each synthesized support is studied, paying attention to the inorganic scaffold. Obtained release profiles fit to Korsmeyer–Peppas model, which explains the differences among the studied supports. Based on the results, UVM-7 material was the most appropriate system for duodenal delivery and was tested in an in vivo model of the Wistar rat. Payload confinement and its complete release after gastric emptying is achieved, establishing the possible use of mesoporous silica particles as protection and direct release agents into the duodenum and, hence, demonstrating that these systems could serve as an alternative to the administration methods employed until now.


2020 ◽  
Vol 3 (03) ◽  
pp. 54-64
Author(s):  
Roya Ashori ◽  
Seyed Alireza Hajiseyed Mirzahosseini

Molybdenum (Mo) ions enter to human body from the diet or drinking waters and have a potentially toxic effect on humans. The thiol-functionalized mesoporous silica nanoparticles (HS-MSNPs) were used for determination and speciation of Mo (II, VI) in human biological samples by dispersive ionic liquid-micro-solid phase extraction (DIL-μ-SPE) coupled to electrothermal atomic absorption spectrometry (ET-AAS). Firstly, the mixture of HS-MSNPs (15 mg), the hydrophobic ionic liquid (1-Hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate; [HMIM][T(PFE)PF3]) and acetone injected into 10 mL of human blood and serum samples. After shaking for 5 min, the Mo(II) and Mo(VI) ions were extracted with the thiol group of MSNPs at pH 6 and 2, respectively, and collected through IL at the bottom of the conical tube by centrifuging. Then, the MO(II,VI) ions were back-extracted from HS-MSNPs with elent based on changing pH, and remained solutions were determined by ET-AAS after dilution with DW up to 0.5 mL, separately.


2020 ◽  
Vol 23 (1) ◽  
pp. 44-53
Author(s):  
Sharmin Akhter ◽  
AKM Saif Uddin ◽  
Aninda Kumar Nath ◽  
Md Salahuddin ◽  
Mohammad Fahim Kadir ◽  
...  

Ketoprofen [2-(3-benzoylphenyl)-propionic acid], a non-steroidal anti-inflammatory drug exhibits poor dissolution pattern. Solid dispersion (SD) techniques were used because it is particularly promising to improve the oral absorption and bioavailability of BCS Class II drugs. This investigation entails solid dispersion of ketoprofen which was formulated and characterized for better release profile and immediate action of the drug. Melting method was applied to prepare solid dispersion by using two immediate release (IR) polymer PEG 6000 and HPMC 6 cps at different weight ratios. In the formulation, a fixed amount of lactose was used as adsorbent. The solid dispersions were investigated for drug entrapment efficiency and dissolution behavior. In vitro dissolution study was performed in phosphate buffer (pH 7.4) medium for one hour. Percent cumulative drug release from solid dispersion was found to be minimum 92.19% and maximum 98.95% within one hour, which showed a better dissolution compared to the active drugs. Evaluation of the properties of the solid dispersion was also performed by using Scanning Electron Microscopy (SEM) study and Differential Thermal Analysis (DTA). SEM results indicated that ketoprofen crystallinity in SDs was significantly reduced, and that the majority of ketoprofen was in amorphous form. No interaction was found between drug and polymers from DTA and Fourier-transform infrared (FTIR) spectroscopy analysis. So, solid dispersion technique may be an effective technique to enhance dissolution rate of ketoprofen. Bangladesh Pharmaceutical Journal 23(1): 44-53, 2020


2016 ◽  
Vol 230 ◽  
pp. 196-207 ◽  
Author(s):  
Édgar Pérez-Esteve ◽  
María Ruiz-Rico ◽  
Cristina de la Torre ◽  
Empar Llorca ◽  
Félix Sancenón ◽  
...  

2012 ◽  
pp. 3111 ◽  
Author(s):  
Abdul-Kader Souid ◽  
Mohammed Taleb Al Samri ◽  
Biradar ◽  
Balhaj ◽  
Al-Hammadi ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 343
Author(s):  
Jong-Seok Kim ◽  
Sung Lee ◽  
Hansol Doh ◽  
Myeong Kim ◽  
Do Kim

Highly luminescent europium complexes modified mesoporous silica particles (MSP) were synthesized as an imaging probes for both in-vitro diagnostic and in-vivo cellular tracking agents. Europium β-diketone chelates (4,4,4-trifluoro-l-(2-thienyl)-l,3-butanedione) trioctylphosphine europium (III) (Eu(TTA)3(P(Oct)3)3) were incorporated inside the nanocavities that existed in hierarchical MSP (Eu@MSP). The MSP and Eu@MSP on mouse bone marrow-derived macrophages (BMDMs) did not show any toxic effect. The MSP and Eu@MSP in the BMDMs were found at cytoplasm without any degradation and immunogenicity. However, both pro- and anti-inflammatory cytokines of macrophages were significantly increased when lipopolysaccharide and a high concentration (100 μg/mL) of MSP and Eu@MSP were treated simultaneously.


Sign in / Sign up

Export Citation Format

Share Document