Strong CPL-active Liquid Crystal Materials Induced by Intermolecular Hydrogen-bonding Interaction and Chirality Induction Mechanism

Soft Matter ◽  
2021 ◽  
Author(s):  
Yihao Shen ◽  
Kun Yao ◽  
Hang Li ◽  
Zhaoran Xu ◽  
Yiwu Quan ◽  
...  

A novel co-assembly material can emit strong CPL signals (λem = 485 nm, glum = +0.076/-0.064) from achiral AIE-active β-cyanostilbene (CYS) liquid crystal dye through intermolecular hydrogen bond (HB) interaction...

2011 ◽  
Vol 356-360 ◽  
pp. 48-51
Author(s):  
Qi Tong ◽  
Ti Feng Jiao

In order to investigate the intermolecular hydrogen bonding of special amphiphiles, two bolaform amphiphilic Schiff bases (GN1 and GN2) with different hydrophilic spacers were designed, and their interaction with barbituric acid were tested by liquid chromatography. The chromatographic properties showed that both the Schiff bases showed hydrogen bonding interaction with barbituric acid. In addition, the influence of various detectors was also studied on both cases. Experimental results show that the test with FLD showed better determination than other detectors. It is proposed that due to the directionality and strong matching of hydrogen bond, one barbituric acid molecule can be encapsulated into the intramolecular area of GN1, while two barbituric acid molecules were trapped into the GN2 molecule through intermolecular H-bonds for GN2 due to the long spacer and flexible structure. A rational complex mode was proposed.


IUCrData ◽  
2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Elvin V. Salerno ◽  
Lava R. Kadel ◽  
David M. Eichhorn

The synthesis and structure is reported of TpPh,4CNNi(NO3)(EtOH) or [Ni(C30H19BN9)(NO3)(C2H6O)], the first half-sandwich complex of a cyanoscorpionate ligand. The pseudooctahedral coordination sphere of the NiII ion is comprised of a tridentate tris(4-cyano-3-phenylpyrazolyl)borate ligand, a bidentate nitrate ligand and a neutral ethanol ligand. The phenyl substituents on the TpPh,4CN ligand are relatively parallel to the planes of the ethanol and nitrate ligands. An intermolecular hydrogen-bonding interaction is evident between the ethanol OH group and the pyrazole CN substituent. The ethanol ligand was modeled with a 0.572 (13)/0.428 (13) disorder of the methyl C atom.


Author(s):  
Arpita Dutta ◽  
Suven Das ◽  
Purak Das ◽  
Suvendu Maity ◽  
Prasanta Ghosh

Abstract A tripeptide Boc-L-Pro-m-ABA-Aib-OMe was synthesized where meta-aminobenzoic acid (m-ABA), a rigid non-coded γ-amino acid is placed as middle residue. Single crystal X-ray diffraction study indicates that the peptide self-assembles into helical motif through intermolecular hydrogen bonding interaction N–H···O, C–H···O, π···π interaction and van der Waals interaction. HR-TEM image reveals the formation of fibril in the solid state.


Sign in / Sign up

Export Citation Format

Share Document