Stability and effect of PbS nanoinclusions in thermoelectric PbTe

Author(s):  
Christian Zeuthen ◽  
Lasse Rabøl Jørgensen ◽  
Lise Joost Støckler ◽  
Martin Roelsgaard ◽  
Ann-Christin Dippel ◽  
...  

In recent years hierarchical thermoelectric materials have been engineered to reach record breaking thermoelectric figures-of-merit (zT) making them attractive in green transition energy conversion applications. PbTe constitutes an archetypical example,...

2021 ◽  
Author(s):  
Lin Xie ◽  
Dongsheng He ◽  
Jiaqing He

Thermoelectric materials, which enable direct energy conversion between waste heat and electricity, are witnessing exciting developments due to innovative breakthroughs both in materials and the synergistic optimization of structures and properties.


2000 ◽  
Vol 626 ◽  
Author(s):  
T. Caillat ◽  
J.-P. Fleurial ◽  
G. J. Snyder ◽  
A. Borshchevsky

ABSTRACTA new version of a segmented thermoelectric unicouple incorporating advanced thermoelectric materials with superior thermoelectric figures of merit has been recently proposed and is currently under development at the Jet Propulsion Laboratory (JPL). This advanced segmented thermoelectric unicouple includes a combination of state-of-the-art thermoelectric materials based on Bi2Te3 and novel materials developed at JPL. The segmented unicouple currently being developed is expected to operate between 300 and about 975K with a projected thermal to electrical efficiency of up to 15%. The segmentation can be adjusted to accommodate various hot-side temperatures depending on the specific application envisioned. Techniques and materials have been developed to bond the different thermoelectric segments together for the nand p-legs and low contact resistance bonds have been achieved. In order to experimentally determine the thermal to electrical efficiency of the unicouple, metallic interconnects must be developed for the hot side of the thermocouple to connect the n- and p-legs electrically. The latest results in the development of these interconnects are described in this paper. Efforts are also focusing on the fabrication of a unicouple specifically designed for thermal and electrical testing.


2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhiting Tian ◽  
Sangyeop Lee ◽  
Gang Chen

Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand throughout the world for energy consumption and CO2 reduction, thermoelectric energy conversion has been receiving intensified attention as a potential candidate for waste-heat harvesting as well as for power generation from renewable sources. Efficient thermoelectric energy conversion critically depends on the performance of thermoelectric materials and devices. In this review, we discuss heat transfer in thermoelectric materials and devices, especially phonon engineering to reduce the lattice thermal conductivity of thermoelectric materials, which requires a fundamental understanding of nanoscale heat conduction physics.


2020 ◽  
Vol 8 (25) ◽  
pp. 12226-12261 ◽  
Author(s):  
Manisha Samanta ◽  
Tanmoy Ghosh ◽  
Sushmita Chandra ◽  
Kanishka Biswas

The present review provides an in-depth insight into the structure–property relationship focusing on the electronic and phonon transport properties of various 2D layered state-of-the-art thermoelectric materials.


1997 ◽  
Vol 478 ◽  
Author(s):  
Jon L. Schindler ◽  
Tim P. Hogan ◽  
Paul W. Brazis ◽  
Carl R. Kannewurf ◽  
Duck-Young Chung ◽  
...  

AbstractNew Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi4Te6 have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of ≈ +110 μV/K at room temperature. A second compound, β-K2Bi8Se13 shows lower conductivity ≈ 240 S/cm, but a larger n-type thermopower ≈ −200 μV/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi2Te3. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi4Te6 reaches ZT ≈ 0.32 at 260 K and for β-K2Bi8Se13 ZT ≈ 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.


2016 ◽  
Vol 9 (10) ◽  
pp. 3120-3127 ◽  
Author(s):  
Feng Hao ◽  
Pengfei Qiu ◽  
Yunshan Tang ◽  
Shengqiang Bai ◽  
Tong Xing ◽  
...  

High efficiency Bi2Te3-based thermoelectric materials and devices with energy conversion efficiencies of up to 6.0% under a temperature gradient of 217 K.


Sign in / Sign up

Export Citation Format

Share Document